

Review Article

Available online at www.JGTPS.com

ISSN: 2230-7346

Journal of Global Trends in Pharmaceutical Sciences
Volume 5, Issue 1, pp -1361-1373, January-March 2014

RECENT RESEARCH ON FLOATING DRUG DELIVERY SYSTEMS-A REVIEW

K.P.R. Chowdary*
CH. K. L.Chaitanya

Vikas Institute of Pharmaceutical Sciences, Nidigatla Road, Rajahmundry- 533103

Journal of Global Trends in Pharmaceutical Sciences

ABSTRACT

Formulation of floating drug delivery system (FDDS) is a topic of current interest in pharmaceutical products development. Floating drug delivery systems are low-density systems that float over the gastric content and remain buoyant in the stomach for a prolonged period of time. They enhance drug bioavailability, reduce drug wastage and provide controlled drug delivery and better patient compliance. Several approaches and techniques were developed in recent year for FDDS. Literature on FDDS along with recent research in this area is reviewed in this article.

Keywords: Floating drug delivery systems, Gastric Residence Time, Formulation approaches, Recent Research.

INTRODUCTION

Oral drug delivery is the most desirable and preferred method of administering therapeutic agents for their systemic effects. The high level of patient compliance in taking oral dosage forms is due to the ease of administration, patient compliance, flexibility in formulation and handling of these forms¹. However the oral route of administration suffers with certain drawbacks mainly short residence time of the dosage form in the GI tract, unpredictable gastric emptying and degradation of the drug due to highly reactive nature of GI contents. Gastric emptying is a complex process and makes *in vivo* performance of the drug delivery system uncertain. Formulation of floating drug delivery systems is an useful approach to avoid this variability with increased gastric retention time of the drug delivery system. Floating systems or hydrodynamically controlled systems are low-density systems that have sufficient buoyancy to float over the gastric contents and remain buoyant in the stomach without affecting the gastric emptying rate for a prolonged period of time. While the system is floating on the gastric contents, the drug is released slowly at the desired rate from

the system. After release of drug, the residual system is emptied from the stomach. This results in an increased gastric residence time and a better control of the fluctuation in plasma drug concentration^{2,3}.

Advantages of FDDS⁴

Floating dosage systems form important technological drug delivery systems with gastric retentive behaviour and offer several advantages in drug delivery. These advantages include:

1. Improved drug absorption, because of increased gastric residence time and more time spent by the dosage form at its absorption site
2. Controlled delivery of drugs.
3. Delivery of drugs for local action in the stomach.
4. Minimizing the mucosal irritation due to drugs, by drug releasing slowly at controlled rate.
5. Treatment of gastrointestinal disorders such as gastro-esophageal reflux.
6. Simple and conventional equipment for manufacture.
7. Ease of administration and better patient compliance.
8. Site-specific drug delivery.

Disadvantages of FDDS^{5,6,7}

1. Floating systems are not feasible for those drugs that have solubility or stability problems in gastric fluids.

Address for correspondence

Prof. K. P. R. Chowdary

Mobile: 9866283578

E-mail: prof.kprchowdary@rediffmail.com

Prof. K. P. R. Chowdary et al/JGTPS/Volume 5, Issue 1, January - March 2014

2. Drugs such as Nifedipine, which is well absorbed along the entire GI tract and which undergo significant first-pass metabolism, may not be suitable candidates for FDDS since the slow gastric emptying may lead to reduced systemic bioavailability. Also there are limitations to the applicability of FDDS for drugs that are irritant to gastric mucosa.
3. Gastric retention is influenced by many factors such as gastric motility, pH and presence of food. These factors are never constant and hence the buoyancy cannot be predicted.
4. Drugs that cause irritation and lesion to gastric mucosa are not suitable to be formulated as floating drug delivery systems.

Suitable Drug Candidates for FDDS

Various drugs have their greatest therapeutic effect when released in the stomach, particularly when the release is prolonged in a continuous, controlled manner. In general, appropriate candidates for FDDS are molecules that have poor colonic absorption but are characterized by better absorption properties at the upper parts of the GIT⁸⁻¹².

1. Drugs with narrow absorption window in GIT, e.g., Riboflavin and Levodopa
2. Drugs that primarily absorbed from stomach and upper part of GIT, e.g., Calcium supplements, chlordiazepoxide and cinnarazine.
3. Drugs that act locally in the stomach, e.g., Antacids and Misoprostol.
4. Drugs that degrade in the colon, e.g., Ranitidine HCl and Metronidazole.
5. Drugs that disturb normal colonic bacteria, e.g., Amoxicillin Trihydrate

Classification of Floating Drug Delivery Systems

A. Single Unit Floating Dosage Systems

Non-effervescent Systems (balanced systems)
Effervescent Systems (Gas-generating Systems)

B. Multiple Unit Floating Dosage Systems

Non-effervescent Systems (balanced systems)
Effervescent Systems (Gas-generating Systems)
Hollow Microspheres

C. Raft Forming Systems

A. Single Unit Floating Dosage

Prof. K. P. R. Chowdary et al/JGTPS/Volume 5, Issue 1, January - March 2014

I. Non-effervescent Systems (balanced systems)

These are single-unit dosage forms, containing one or more gel-forming hydrophilic polymers. Hydroxypropylmethylcellulose (HPMC) is the most commonly used excipient, although ethylcellulose (HEC), hydroxypropylcellulose (HPC), sodium carboxymethyl agar, carrageen or alginic acid are also used. The polymer is mixed with drug and usually administered in a gelatine capsule. The capsule rapidly dissolves in the gastric fluid, and hydration and swelling of the surface polymers produces floating mass^{13,14}. Drug release is controlled by the formation of a hydrated boundary at the surface. Continuous erosion of the surface allows water penetration to the inner layers, maintaining surface hydration and buoyancy¹⁵. Incorporation of fatty excipients gives low-density formulations and reduced penetration of water, reducing the erosion. Effective drug delivery depends on the balance of drug loading and the effect of polymer on its release profile¹⁶.

II. Gas-generating systems

Floatability can also be achieved by generation of gas bubbles. Carbon dioxide (CO₂) can be generated in situ by incorporation of carbonates or bicarbonates, which react with acid, either the natural gastric acid or co-formulated as citric or tartaric acid^{17,18}. The optimal stoichiometric ratio of citric acid and sodium bicarbonate for gas generation is reported to be 0.76:1. Gastric floating drug delivery system (GFDDS) offers numerous advantages over other gastric retention systems^{19,20}. These systems have a bulk density lower than gastric fluids and thus remain buoyant in the stomach without affecting the gastric emptying rate for a prolonged period of time²¹. While the system is floating on the gastric contents, the drug is released slowly at desired rate from the stomach^{22,23}.

B. Multi –Unit Dosage Forms:

The purpose for designing multiple-unit dosage form is to develop a formulation which has all the advantages of a single-unit form and also devoid the above mentioned disadvantages of single-unit formulations. In pursuit of this endeavor many multiple-unit floatable dosage forms have been designed²⁴. Microspheres with high loading capacity can be formulated using various polymers such as albumin, gelatine,

starch, polymethacrylate, polyacrylamine, and polyalkylcyanoacrylate. Spherical polymeric microsponges, are referred as “microballoons,” have been prepared²⁵. Microspheres have a characteristic internal hollow structure and show an excellent in vitro float ability. In Carbon dioxide-generating multiple-unit oral formulations several devices with features that extend, unfold, or are inflated by carbon dioxide generated in the devices after administration have been described in the recent patent literature. These dosage forms are excluded from the passage of the pyloric sphincter if a diameter of ~12 to 18 mm in their expanded state is exceeded²⁶.

C. Raft Forming Systems:

Raft forming systems have received much attention for the delivery of antacids and drug delivery for gastrointestinal infections and disorders. The mechanism involved in the raft formation includes the formation of viscous cohesive gel in contact with gastric fluids, wherein each portion of the liquid swells forming a continuous layer called a raft. This raft floats on gastric fluids because of low bulk density created by the formation of CO₂. Usually, the system contains a gel forming agent and alkaline bicarbonates or carbonates responsible for the formation of CO₂ to make the system less dense and float on the gastric fluids²⁷ an antacid raft forming floating system. The system contains a gel forming agent (e.g. alginic bicarbonate, calcium carbonate, mannitol and a sweetener. These ingredients were granulated, and citric acid was added to the granules. The formulation produces effervescence and aerates the raft formed, making it float acid), sodium bicarbonate and acid neutralizer, which forms a foaming sodium alginate gel (raft) when in contact with gastric fluids. The raft thus formed floats on the gastric fluids and prevents the reflux of the gastric contents (i.e. gastric acid) into the esophagus by acting as a barrier between the stomach and esophagus. A patent assigned to Reckitt and Colman Products Ltd., describes a raft forming formulation for the treatment of helicobacter pylori (H. Pylori) infections in the GIT²⁸.

Formulation excipients used in FDDS²⁹

1. Polymers: The following polymers used in preparations of FDDS -HPMC K4 M, Calcium alginate, Eudragit S100, Eudragit RL, Propylene foam, Eudragit RS, ethyl cellulose,

poly methyl methacrylate, Methocel K4M, Polyethylene oxide, β Cyclodextrin, HPMC 4000, HPMC 100, CMC, Polyethylene glycol, polycarbonate, PVA, Polycarbo-nate, Sodium alginate, HPC-L, CP 934P, HPC, Eudragit S, HPMC, Metolose S.M. 100, PVP, HPC-H, HPC-M, HPMC K15, Polyox, HPMC K4, Acrylic polymer, E4 M and Carbopol.

2. Inert fatty materials (5%-75%): Edible, inert fatty material having a specific gravity of less than one can be used to decrease the hydrophilic property of formulation and hence increase buoyancy. E.g. Beeswax, fatty acids, long chain fatty alcohols, Gelucires 39/01 and 43/01.

3. Effervescent agents: Sodium bicarbonate, citric acid, tartaric acid, Di-SGC (Di-Sodium Glycine Carbonate, CG (Citroglycine).

4. Release rate accelerants (5%-60%): e.g. lactose, mannitol.

5. Release rate retardants (5%-60%): e.g. Dicalciumphosphate, talc, magnesium stearate.

6. Buoyancy increasing agents (upto80%): e.g. Ethyl cellulose.

7. Low density material: Polypropylene foam powder (AccurelMP 1000).

Factors Affecting the Floating and Floating Time

1. Density: - Floating is a function of dosage form buoyancy that is dependent on the density.

2. Shape of dosage form: - Tetrahedron and ring shaped devices with flexural modules of 48 and 22.5 kilo pounds per square inch (KSI) are reported to have better floating, 90% to 100% retention at 24 hours compared with other shapes³⁰.

3. Concomitant drug administration: -

Anticholinergics like atropine and propantheline, opiates like codeine and prokinetic agents like metoclopramide and cisapride; can affect floating time.

4. Fed or unfed state: - Under fasting conditions, the GI motility is characterized by periods of strong motor activity or the migrating myoelectric complex (MMC) that occurs every 1.5 to 2 hours³¹.

5. Nature of meal: - Feeding of indigestible polymers or fatty acid salts can change the motility pattern of the stomach to a fed state, thus decreasing the gastric emptying rate and prolonging drug release³².

6. Caloric content and feeding frequency: -

Floating can be increased by four to 10 hours with a meal that is high in proteins and fats. The floating can increase by over 400 minutes when successive meals are given compared with a single meal due to the low frequency of MMC.

7. Age: - Elderly people, especially those over 70, have a significantly longer; floating³³. Disease condition such as diabetes and crohn's disease etc also affect drug delivery.

8. Posture: - Floating can vary between supine and upright ambulatory states of the patient³⁴.

Evaluation of Floating Drug Delivery Systems

Various parameters that need to be evaluated in gastro retentive formulations include floating duration, dissolution profiles, specific gravity, content uniformity, hardness, and friability in case of solid dosage forms³⁵. In the case of multiparticulate drug delivery systems, differential scanning calorimetry (DSC), particle size analysis, flow properties, surface morphology, and mechanical properties are also performed. In vivo evaluation is performed by X-ray³⁵, Gamma-scintigraphy³⁶, gastroscopy^{37,38}, and ultra sonography^{39,40}.

Applications of Floating Drug Delivery Systems

1. Enhanced Bioavailability:

The bioavailability of riboflavin CR-GRDF is significantly enhanced in comparison to the administration of non-GRDF CR polymeric formulations. There are several different processes, related to absorption and transit of the drug in the gastrointestinal tract, that act concomitantly to influence the magnitude of drug absorption⁴¹.

2. Sustained drug delivery:

Oral CR formulations are encountered with problems such as gastric residence time in the GIT. These problems can be overcome with the HBS systems which can remain in the stomach for long periods and have a bulk density <1 as a result of which they can float on the gastric contents. These systems are relatively larger in size and passing from the pyloric opening is prohibited⁴².

3. Site specific drug delivery systems:

These systems are particularly advantageous for drugs that are specifically absorbed from the stomach or the proximal part of the small intestine. The controlled, slow delivery of drug to the stomach provides sufficient local therapeutic levels and limits the systemic exposure to the drug. This reduces side effects that are caused by the drug in the blood circulation. In addition, the prolonged gastric availability from a site directed delivery system may also reduce the dosing frequency. Eg: Furosemide and Riboflavin⁴³.

4. Absorption enhancement:

Drugs which are having poor bioavailability because of site specific absorption from the upper part of the GIT are potential candidates to be formulated as floating drug delivery systems, thereby maximizing their absorption⁴⁴.

5. Minimized adverse activity at the colon:

Retention of the drug in the HBS systems at the stomach minimizes the amount of drug that reaches the colon. Thus, undesirable activities of the drug in colon may be prevented. This Pharmacodynamic aspect provides the rationale for GRDF formulation for betalactam antibiotics that are absorbed only from the small intestine, and whose presence in the colon leads to the development of microorganism's resistance.

6. Reduced fluctuations of drug concentration:

Continuous input of the drug following crgrdf administration produces blood drug concentrations journal of current pharmaceutical research 2011; 7 (1): 6-20 within a narrower range compared to the immediate release dosage forms. Thus, fluctuations in drug effects are minimized and concentration dependent adverse effects that are associated with peak concentrations can be prevented. This feature is of special importance for drugs with a narrow therapeutic index⁴⁵.

Drugs Investigated in Floating Drug Delivery Systems

Several drugs belongs to various pharmacological categories were investigated in different types of Floating Drug Delivery Systems as shown in Table 1.

Table 1⁴⁶: Drugs Investigated In Floating Drug Delivery Systems

S. No	Types Of Dosage Forms	Drugs Explored In Floating Dosage Forms
1	Microspheres	Aspirin, Griseofulvine, P-Nitro Aniline, Ibuprofen, Ketoprofen, Terfenadine, Tranilast, Verapamil.
2	Granules	Diclofenac Sodium, Indomethacin, Prednisolone.
3	Films	Cinnarizine, Drug Delivery Device.
4	Capsules	Chlordiazepoxide Hcl, Diazepam, Furosemide, L-Dopa And Benserazide, Misoprostol, Nicardipine, Propranolol Hcl, Ursodeoxycholic Acid
5	Tablets/Pills	Acetaminophen, Aspirin, Amoxycillin Trihydrate, Ampicillin, Atenolol, Captopril, Ciprofloxacin, Chlorpheniramine Maleate, Cinnarizine, Furosemide, 5-Fluorouracil, Isosorbide Mononitrate, Diltiazem, Isosorbide Dinitrate, Nimodipine, Para Amino Benzoic acid, Piretanide, Prednisolone, Quinidine, Varapamil Hcl, Riboflavin, Sotalol, Theophylline.

Recent Research on Floating Drug Delivery Systems:

A summary of recent research on floating drug delivery systems is given in Table 2

CONCLUSION

Formulation of floating drug delivery systems is an efficient and potential approach

for gastric retention of dosage forms to improve bioavailability and also to achieve controlled release. Though several approaches and techniques are developed for FDDS, research in this area is needed until an ideal system with applicability and industrial feasibility is developed.

Table 2: Summary of Recent Research on Floating Drug Delivery Systems⁴⁷⁻⁹⁶

S. No	Drugs (Category)	Type of Dosage Form	Excipients / Polymers Used	Method	Reason / Results	Ref no
1	Captopril (Anti Hypertensive- ACE inhibitor)	Core mini tablets	HPMCK100, Ethylcellulose7cps, MCC.	Direct compression	Prolonged gastric residence time and Increased bioavailability.	47
2	Acyclovir (antiviral drug)	Tablet	Psyllium husk , HPMC K4M, sodium bicarbonate.	Wet granulation	Increased gastric residence time and bioavailability	48
3	Ciprofloxacin (First generation fluoroquinolone)	Tablet	HPMC 4M, K15M, K100M, Citric acid, anhydrous, sodium bicarbonate.	Direct compression	Improved GI absorption and controlled release of drug.	49
4	Clarithromycin (Macrolide antibiotic)	Tablet	HPMC K4M, sodium bicarbonate.	Wet granulation	Improved bioavailability.	50
5	Famotidine (Histamine H2receptor antagonist)	Gel beads	Sodium alginate, HPMC K15m.	Gelation method	Prolonged the gastric residence time upto 8hr and improved bioavailability.	51
6	Metformin (Antidiabetic)	Micro Capsule	Cellulose acetate butyrate , Eudragit	Solvent evaporation method	Enhanced absorption and improved bioavailability.	52
7	Propranolol HCL (Anti hypertensive)	Tablet	HPMC, HPC, Xanthan gum sodium alginate	Direct compression	Increase bioavailability and Gastric residence time.	53
8	Rantidine (Histamine H2receptor antagonist)	Tablet	HPMC K4M Guar gum , Xanthan gum	Direct compression	Increased Gastric residence time and better sustained effect.	54

9	Rifabutin (Anti-mycobacterial agent)	Beads	Deacetylated gellan gum	Ionotropic gelation in acidic medium	Sustained pharmacological action and improved bioavailability.	55
10	Silymarin (Anti-Oxident)	tablet	Psyllium husk, HPMC K4M, k15M, sodium bicarbonate, crosovidone , MCC.	Direct compression	Prolonged drug release and improved the bioavailability and patient compliance.	56
11	Tizanidine HCL (central acting muscle relaxant)	Matrix tablet	HPMC, MCC PH 102, Dicalcium phosphate, Lactose	Wet granulation	Sustained release over 24hr.	57
12	Zidovudine (antiviral drug)	Tablet	HPMC K4M, Xanthan gum, carbapol 934P.	Direct compression technique	Improved the bioavailability and control release.	58
13	Itopride (peptic ulcer)	Matrix tablet	HPMC K100M, K4M, K15M. NaHCO ₃	Direct compression	Improved bioavailability	59
14	Hydro Chlor Thiazide (thiazide diuretic)	Micro sphere	EC, cellulose acetate, cross linked PVP, polyacrylamide, PEG HPMC	Ionotropic gelation in acidic medium	Sustained and pH independent and reproducible drug release.	60
15	Verapamil HCL (Anti hypertensive-calcium channel blocker)	Tablet	MCC 102, HPMC K4M ,HPMC 15M.	Direct compression	PH dependent and controlled release was obtained	61
16	Atenolol (Beta adrenergic blocker)	Tablet	HPMC K4m, K100m, Directly compressible lactose, xanthan gum.	Direct compression	Prolonged gastric residence time.	62
17	Foscarnet sodium (antiviral drug)	Alginate beads	HPMCK15m, Guar gum, Tamarind gum.	Ionic gelation method	Prolong gastric residence time and increased bioavailability.	63
18	Gabapentin (Anti-convulsant)	Tablet	HPMC K100M, K15M, PVPK30, MCC.	Direct compression	Increased bioavailability and Prolonged drug release.	64
19	Metoprolol tartrate (cardio selective β blocker)	Core mini tablets	HPMC K15M, PVPK30, HCL , MCC.	Wet granulation	Increased gastric residence time.	65
20	Refabutin (Anti-microbial)	Microspheres	Gellan gum	Ionic gelation	Remained buoyant up to 18h and provided controlled release.	66
21	Verapamil HCL (Anti hypertensive)	Gel beads	Sodium alginate, calcium chloride.	Emulsion gelation technique	Prolonged drug release.	67
22	Rosiglitazone maleate (Antidiabetic)	Micro sphere	Eudragit RS100, tributylcitrate, heavy liquid paraffin, petroleum ether.	Emulsification-solvent evaporation method	Control release and improved bioavailability.	68
23	Cefpodoxime Proxetil (cephalosporin prodrug)	Matrix tablet	HPMC K4M, sodium CMC, carbopol 934P.	Direct compression	Prolonged gastric residence time and increased drug absorption and bioavailability.	69
24	Cefuroxime HCl (Cephalosporin)	Matrix tablet	HPMC K4M, sodium bicarbonate.	Direct compression	Buoyancy over 8-24hr.	70
25	Cinnarizine (Histmine H2receptor antagonist)	Gelling suspension	Sod alginate , calcium carbonate.	Ionic gelation	98.90% release in 12 hours over instant floating.	71
26	Atorvastatin calcium (HMG-CoA reductase inhibitor)	Tablets	HPMC K4M, Ethyl cellulose Bees wax	Melt granulation	Drug release in a controlled manner for extended period of time .	72

27	carbamazepine (Anti-convulsant)	Matrix tablet	HPMC, sodium bicarbonate, and EC	Melt granulation	Improved drug absorption and bioavailability.	73
28	Labetalol Hydrochloride (non-selective α , β -adreno receptor antagonist)	Matrix tablets	HPMCK4M Carbopol 934P , Sod CMC ,citric acid sodium bicarbonate.	Simplex Centroid Design	Improved bioavailability and controlled over 12hr.	74
29	Levofloxacin (antibiotic)	Tablet	Citric Acid and Sodium Bicarbonate. HPMC, EC.	Direct compression	Drug release with prolonged Period.	75
30	Lornoxicam (NSAID)	Matrix tablets	HPMC K15M, calcium carbonate (13%).	Direct compression	Prolonged gastric residence time and improved bioavailability.	76
31	Metoclopramide HCL (Anti-emetic)	Capsule	HPMC K4M ,Carbopol 934P , Sod CMC, mannitol,Sod alginate.	Capsule	Controlled drug release upto 6-8hr.	77
32	Montelukast (selective leukotriene receptor antagonist.)	Matrix tablets	HPM(K4M, K15M), xanthan gum sodium bicarbonate	Direct compression	Prolonged drug release over 24hr.	78
33	Nifedipine (calcium channel blocking agent)	Floating tablet	HPMC K100M	Fabrication	Prolonged gastric residence time, and controlled release over 24hr and improved bioavailability.	79
34	Nizatidine (an antiulcer)	Tablet	HPMC (K100, K4M, K15M & K100M) ,sodium bicarbonate	Direct compression	Controlled rehlease and enhanced bioavailability.	80
35	Norfloxacin (antibiotic)	Tablet	HPMC K4M, HPMC K100M, and xanthan gum. citric acid	Direct compression	Increased bioavailability.	81
36	Ofloxacin (antibacterial)	Tablet	guar gum, locust bean gum,HPMC K100M , sodium bicarbonate	Wet granulation	Prolonged gastric residence time and controlled and uniform release.	82
37	Ondansetron HCL (OND) (selective serotonin 5HT3 receptor antagonist)	Coated pellets	HPMC-E6; Eudragit RL-100 (ERL) RS-100 (ERS) cetyl alcohol. NaHCO3 PEG6000	Direct compression	Prolonged gastric residence time and increased bioavailability.	83
38	Cephalexin (β -lactum antibiotic)	Tablet	Citric Acid , Sodium Bicarbonate. HPMC K100M.	Wet granulation	Drug release over 12hr	84
39	Piroxicam (NSAID)	Micro spheres	Eudragit S 100). Polyvinyl alcohol (0.1-0.5 g)	Emulsification solvent-evaporation	Sustained drug delivery.	85
40	Pregabalin (Anti convulsent)	Matrix tablet	HPMC K4M ethyl cellulose,crospovidone	Wet granulation	Improved bioavailability.	86
41	Rabeprazole sodium (Anti-ulcer)	Micro spheres	HPMC,Ethyl cellulose and Chitosan	Solvent evaporation	Polongation of gastric retention time and enhanced drug absorption and bioavailability	87
42	Tinidazole (Antibacterial and anti protozoaol)	Tablet	HPMC, Sodium bicarbonate, citric acid.	Direct compression	Good Controlled release improved bioavailability.	88
43	Tramadol (Opoid analgesic)	Matrix tablet	15M, HPMC 100 LV ,Sodium bicarbonate, gum tragacanth,	Direct compression	Prolonged gastric residence time and enhanced bioavailability	89

44	Amoxycillin trihydrate (Anti-bacterial)	Matrix tablet	HPMC K4M, xanthan gum, ethocel,	Direct Compression	Sustained release over 12hr.	90
45	Glipizide. (Antidiabetic)	Matrix tablets	HPMC K100M, sodium alginate, Carbopol 940, and PVP K30	Direct Compression	Prolonged gastric retention and improved bioavailability	91
46	Perindopril erbumine (Anti-hypertensive)	Microspheres	Ethyl cellulose, HPMC K4M, Eudragit S100, PVP K30 & PVP K90	Double emulsion solvent diffusion method	Polymer ratio affected the size, entrapment efficiency, % buoyancy & drug release.	92
47	Trimetazidin Dihydro chloride(Anti-anginal agent)	Micro spheres	Chitosan	Capillary extrusion technique	Prolonged drug release (12 h) and remained buoyant for > 11 hours.	93
48	Acetazolamide (Anti-epileptic & Anti-hypertensive agent)	Microspheres	HPMC K15M, Ethyl cellulose 25 cps	Non aqueous solvent evaporation method	Remained buoyant for 12hr.	94
49	Ketorolac trometamol (NSAID)	Microspheres	Ethyl cellulose, HPMC K4M, Eudragit S100, Eudragit 100	Emulsion solvent diffusion technique	Improved absorption and bioavailability.	95
50	Boswellic acid (Analgesic, anti-arthritics,anti-inflammatory)	Microspheres	Ethyl cellulose, HPMC	Solvent evaporation technique	Remained buoyant for more than 12h.	96

REFERENCES

1. Ansel HC, Allen LV, Popovich NG. *Pharmaceutical Dosage Forms and Drug Delivery Systems*. Philadelphia, Lippincott Williams and Wilkins Chapter -3, 2003:23-31.
2. Mayavanshi AV, Gajar SS. Floating drug delivery system to increase gastric retention of drug: A Review. *J. Pharm. Res.*, Oct- dec .2008; 1940:345-348.
3. Vachhani savan R, Patel Dipen, Prajapati ST, Patel CN. ; *J Chem.Pharma Res.*, 2010; 2(2):57-64.
4. Grabowski SR. *Principles of Anatomy and Physiology*. New York: John Wiley and Sons;10; 2002.
5. KRW, Waugh A. *Anatomy and Physiology in Health and Illness*. London: Churchill Livingstone; 9; 1996.
6. Thanoo B.C, Sunny M.C. and Jayakrishnan A., Oral Sustained-release Drug Delivery Systems using Polycarbonate Microspheres Capable of Floating on the Gastric Fluid, *J.Pharm. Pharmacol.*, 1993,45,21-24.
7. Kawashinia Y, Niwa T. Takuchi H. Hino T, Itoh Y. Hallow Microspheres for use as a Floating Controlled Drug Delivery System in the Stomach. *J. Pharm. Sci.*, 1992; 81(2): 135- 140.
8. Deshpande A.A, Shah N.H, Rhodes C.T, Malick W. *Pharm. Res.*, 1997; 14: 815- 819
9. Davis SS, Stockwell AF, Taylor MJ. *Pharm. Res.*, 1986; 3: 208-213
10. Lehr CM. *Crit Rev Ther. Drug Carrier Syst.*, 1994; 11: 119-160
11. Groning R, Heun G. *Drug Dev Ind. Pharm.*, 1984; 10: 527-539
12. Klausner EA, Lavy E, Friedman M, Hoffman A. *J Cont Rel.*, 2003; 90: 143- 162
13. El-Kamel A.H., Sokar M.S, Algamal S.S, Naggar V.F ; Preparation and evaluation Of Ketoprofen Floating Oral Drug Delivery System. *Int. J. Pharm.*, 2001; 220:13-21
14. Menon A, Ritschel W.A., Sakr A. Development and Evaluation of a Monolithic Floating Dosage form Furosemide. *J Pharm. Sci.*, 1994; 83:239-245.

15. Oth M, Franz M, Timmermans J, Moes A. The Bilayer Floating Capsule: A Stomach Directed Drug delivery System for Misoprostol. **Pharm. Res.**, 1992; 9:298-302.
16. Gohel M.C., Mehta P.R., **Dissolution tech.**, 2004, 11(4), 22-25.
17. Karande A.D., Yeole P.G. Comparative Assessment of Different Dissolution Apparatus for Floating Drug Delivery Systems. **Dissolution tech.**, 2006; 13(1):20-23.
18. Ichikawa M., Watanabe S, Miyake Y. A New Multiple Unit Oral Floating Dosage System. I: Preparation and *in vitro* evaluation of floating and sustained-release kinetics. **J.Pharm.Sci.**, 2001; 80:1062-1066.
19. Baumgartner S, Kristel J, Vreer F, Vodopivec P, Zorko B. Optimisation of floating matrix tablets and evaluation of their gastric residence time. **Int J Pharm.**, 2000;195 :125-135.
20. Klausner EA, Lavy E, Friedman M, Hoffman A. Expandable Gastroretentive Dosage Forms. **J Control Release.**, 2003; 90:143-162.
21. Singh B.N., Kim K.H., Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. **J Control Rel.**, 2000; 63:235-9.
22. Yang L., Esharghi J., Fassihi R. A new intra gastric delivery system for the treatment of helicobacter pylori associated gastric ulcers: In vitro evaluation. **J. Cont. Rel.**, 1999;
23. Shivram Shinde, Imran Tadwee, Sadhana Shahi "Gastro retentive Drug Delivery System: A Review" **Int. J. Pharm. Res. & All. Sci.**, 2012; 1(1), 01-13
24. Bodmeier, R., Floating or pulsatile drug delivery systems based on coated effervescent cores. **Int. J. Pharm.**, 1999, 187, 175-184.
25. Ingani, H.M., Timmermans, J., Moës, A.J., Conception and in vivo investigation of peroral sustained release floating dosage forms with enhanced gastrointestinal transit. **Int. J. Pharm.**, 1987; 35: 157-164.
26. Vyas S.P and Khar R.K. Targetted and controlled Drug Delivery Novel carrier system 1st Ed., CBS Publishers and distributors, New Delhi, 2002; 196-217.
27. Jain N.K., Progress in Controlled and Novel Drug Delivery Systems, 1st Ed. CBS Publishers and Distributors, New Delhi, 2004; 84-85.
28. Iannuccelli V., Coppi G., Bernabei M.T. and Cameroni R., Air compartment multiple-unit system for prolonged gastric residence. Part I. Formulation study, **Int.J.Pharm.** 1998; 174:47- 54.
29. Floating drug delivery system ;journal of current pharmaceutical research; 2011;7(1), 6-20
30. Ichikawa M, Watanabe S, Miyake Y. A new multiple unit oral floating dosage system. I: Preparation and in vitro evaluation of floating and sustained-release kinetics. **J Pharm. Sci.**, 1991; 8:1062-1066.
31. Gu T.H. Pharmacokinetics and pharmacodynamics of diltiazem floating Available online at www.ijpras.com 28 tablets. Chung Kao Yao Li Hsuesh Pao.1992; 13: 527-531.
32. Rouge N., Cole E.T., Doelker E., Buri P. Buoyancy and drug release patterns of floating mini tablets containing piretanide and atenolol as model drugs. **Pharm. Dev. Technol.**, 1998; 3:73-84.
33. Cheuh H.R., Zia H., Rhodes C.T. Optimization of Sotalol floating and bioadhesive extended release tablet formulation. **Drug Dev. Ind. Pharm.**, 1995;21:1725-1747.
34. Nur A.O., Zhang J.S. Captopril floating and/or bioadhesive tablets: design and release kinetics. **Drug Dev Ind Pharm.**, 2000;26:965-969.
35. Talukder R, Fassihi R. Gastroretentive drug delivery system: A Mini Review. **Drug Dev Ind Pharm.**, 2004; 30(10):1019-1028.
36. Klausner EA, Lavy E, Stepensky D, Friedman M, Hoffman A. Novel gastroretentive dosage form: evaluation of gastroretentivity and its effect on riboflavin absorption in dogs. **Pharm. Res.**, 2002; 19:1516-1523.
37. Fell J., Digenis C.G. Imaging and behavior of solid oral dosage forms in vivo. **Int.J.Pharm.**,1984; 22(1):1-5.

38. Gansbeke, B.V., Timmermans J., Schoutens A and Moes A.J. Intragastric positioning of two concurrently ingested pharmaceutical matrix dosage forms, **Nucl Med Biol.**, 1991;18:711-718.

39. Jao, F., Edgren, D E. and Wong, P S. (2000) Gastric retention dosage form Having multiple layers. **Int Application.**, July, 2006.

40. Cook JD, Carriaga M, Kahn SG, Schalch W. Gastric delivery system for iron supplementation. **Lancet**.1990;335:1136-1139.

41. Menon A, Ritschel WA, Sakr A. Development and evaluation of a monolithic floating dosage form for furosemide. **J Pharm Sci.**, 1994;83:239-245

42. Rouge N, Allémann E, Gex-Fabry M, et al. Comparative pharmacokinetic study of a floating multiple unit capsule, a high density multiple unit capsule and an immediate release tablet containing 25 mg atenolol. **Pharm Acta Helv** ,1998;73:81-87.

43. Yie Chein "Novel Drug Delivery System" 2nd ed. Marcel jekker Inc., New York. 1992,13.

44. Hendee, W. R. In Textbook of Diagnostic Imaging II, 2nd Ed., W B Saunders, Philadelphia, 1999; 1:1-6.

45. <http://www.pharmabiz.com>, Basak S, Chronicle Specials, Floatable Gastroretentives: Emerging Potentials, Mar-2006

46. Deshpande A.A., Shah N.H., Rhodes C.T., Malick W.,Development of a novel controlled release system for gastric retention, **Pharm. Res.**, 1997; 14: 815-819.

47. Lingam Meka, Bhaskar Kesavan, Krishna Mohan Chinnala Venkateswarlu Vobalaboina, and Madhusudan Rao Yamsani ;Preparation of a Matrix Type Multiple-Unit Gastro Retentive Floating Drug Delivery System for Captopril Based on Gas Formation Technique: In Vitro Evaluation; **AAPS PharmSciTech.**, 2008 June; 9(2); May 6; 612-619 .

48. A. A. Kharia,S. N. Hiremath, A. K. Singhai, L. K. Omray, and S. K. Jain Design and Optimization of Floating Drug Delivery System of Acyclovir; **Indian J Pharma Sci.**, 2010 Sep-Oct; 72(5): 599-606.

49. Bhalchandran M.Habade^{*1},Vidya shrri kamble,K.Ramesh, Milind P.Wagh; Formulation and evalution of Floating drug delivery system of Ciprofloxacin; **IJPRD**;2011;3(11)

50. Sanjay S.Patel, S.Ray, and R.S.Thakur; Formulation and Evaluation of Floating Drug Delivery System Containing Clarithromycin For Helicobacter Pylori; **Indian Acta Poloniae Pharmaceutical Drug Research**; 63(1) ;53-61, 2006; Department of Pharmaceutics, **J Pharm Sci.**, 2010 Sep-Oct; 72(5): 599-606.

51. B. K. Satishbabu, V. R. Sandeep, R. B. Ravi, and R. Shrutiag; Formulation and Evaluation of Floating Drug Delivery System of Famotidine; **Indian J Pharm Sci.**, 2010 ;Nov-Dec; 72(6): 738-744.

52. Bipul nath,Lilakanta Nath,Bhaskar Marzumdar,Niraj Sharma and Miral Sankar;Design and Development of Metformin Hcl Floating Microcapsules Using Two Polymers Of Different Permeability characterstics; **International Journal Of Pharmaceutical sciences and Nanotechnology**, 2(3);2009.

53. Swati C. Jagdale, Amit J. Agavekar,Sudhir V. Pandya,Bhanudas S. Kuchekar, and Aniruddha R. Chabukswar; Formulation and Evaluation of Gastroretentive Drug Delivery System of Propranolol Hydrochloride; **AAPS Pharm Sci Tech.**, 2009 September; 10(3);August 12. 1071– 1079.

54. Kavita.K, Sudhir K. Yadav,Tamizhamani TZ; Formulation and Evaluation of of Floating Tablets of RHCL Using Natural and Synthetic Polymers; **International Journal Pharm Tech Research**; 2010; 2(2);1513-1519.

55. Anurag Verma1 and Jayant K. Pandit; Rifabutin loaded floating gellan gum beads: In vitro and in vivo evaluation; **African Journal of Pharmacy and Pharmacology**; 5(5); 2011; 589-595.

56. Gar, g RGupta GD; Preparation and evaluation of gastroretentive floating tablets of Silymarin; **Chem pharma Bull.**, (Tokyo);2009;57(6);545-549.

57. Navjot Singh, Anirbandeep Bose ,Rakesh K M ishra, Vivekjain Singh, Sanjay Dhakar, Dileep Bharathi ; Development And Evaluation of Gastroretentive Foating Drug System For Tizanidine Hydrochloride And Its Invivo Gamma-Scintigraphic studies Using TC-99M Tracer; **Asian Journal of Pharmaceutical and Clinical Research**; 5(3); 2012.

58. G. Raghavendra Rao, Sunil Firangi, Patel Keyur; Formulation And Evalution Of Gastroretentive ffervescent Foating Drug System Of Zidovudine;**AJPTR.**, 2(6); 2012.

59. H.D.Karen,S.Ananad,B.N.Patel,C.N.patel ; ; Development And Evaluation of Foating Drug System of Itopride Hydrochloride; **Am. J PharmTech Res.**,2012; 2(2).

60. Ravikumar R.Patel 'Dr.Jayvadan K.Patel ; Formulation and Development of HydroChlorthiazide Floating Microspheres; **Indian. J. Pharm. Sci.**, 67(3), 2005, 265-272.

61. Bhushan S.Gulecha Sandhna Shahi Vivek B.Rajendra; Formulation and Optimization of Biphasic Foating Drug System of Verapamil Hydrochloride; **International Journal of Pharmacy and Pharmaceutical Sciences**,4(5),2012.

62. VD Havaldar,AS Kulkarni,RJ Dias,NH Aloorkar, KK Mali; Floating matrix tablets atenolol: Formulation and *in vitro* evaluation;**Asian Journal of Pharmaceutics**, 2009 ;3(4); 286-291.

63. H.M.Pagart,S.D.Barhate,V.P.Sinde,V.L.C houdhari,M.M.Bari;Formulation of invitro Evaluation of Floating Aliginate Gel Beads Of Foscarnet Sodium; **International Journal Of Herbal Research**; 201;1(2);1-6.

64. CH.Swarna Kamala Chinthala, K.Srinivas Reddy Kota, M.Hadassah, E.Hepsibha Metilda, S.Sridevi;Formulation and evaluation of gastroretentive floating tablets of Gabapentin using effervescent technology; **Int J Pharm Biomed Res.**, 2012, 3(4), 202- 208.

65. Anuradha K. Salunkhe, Remeth J. Dias, Kailas K. Mali, Niranjan S. Mahajan and Vishwajeet S. Ghorpade;Formulation and evaluation of floating pulsatile drug Delivery system of Metoprolol tartrate; **Der Pharmacia Lettre.**, 2011, 3(3): 147-160.

66. Anurag Verma1 and Jayant K. Pandit; Rifabutin loaded floating gellan gum beads: In vitro and in vivo evaluation;**African Journal of Pharmacy and Pharmacology**; 2011;5(5); 589-595.

67. Azhar Danish Khan, Meenakshi Bajpai; Formulation and Evaluation of Floating beads of Verapamil hydrochloride; **International Journal of Pharm. Tech Research**, 2011;3(3);1537-1546.

68. Madan Mohan Kamila, Nita Mondal, Lakshmi Kanta Ghosh, and Bijan Kumar Gupta; Multiunit Floating Drug Delivery System of Rosiglitazone Maleate: Development, Characterization, Statistical Optimization of Drug Release and In Vivo Evaluation; **AAPS Pharm SciTech.**, 2009; 10(3): 887-899.

69. K. Sreenivasa Rao, Rakesh R. Vairagkar, Dattatreya B. Udgirkar, Praveen S. Patil land Karankumar V. Biradar;Development and Evaluataion of Gastro retentive Floating Tablets of Cefpodoxime proxetil ;**IJRPC.**, 2012, 2(1) .

70. Ravindra S Dhanul, Samikumar, Raj Mouli, Sanjay T Damal And Atmaran P.Pawar ;Design and Evaluation of Bilayer Floating tablets of Cefuroxime axetil for bimodal release;**Journal of scientific and Industrial Research**, 2006; 65;812-816.

71. Supriya S Shidhaye; Sustained Release Floating Drug Delivery System of In-Situ Gelling Suspension of Cinnarizine; **Journal of Pharmacy Research (New Journal BioMedRx)**, 2009;2(3).

72. N Arunkumar, C Rani and KP Mohanraj; Formulation and In Vitro evaluation of oral floating tablets of atorvastatin; **Research J. Pharm. and Tech.**, 2008;1(4).

73. Dasharath M. Patel, Natvarlal M. Patel, Nitesh N. Pandya, and Pranav D. Jogani Gastroretentive drug delivery system of carbamazepine: Formulation optimization using simplex lattice design: A technical note; **AAPS Pharm. Sci Tech.**, 2007 March; 8(1).

74. Ravi K. Barde, Rahul K. Amrutkar , Minal R. Narkhede and Jitendra Y. Nehete; Optimization of Gastro Retentive Drug Delivery System of Lebetatol hydrochloride Using Simple Centroid Design;Barde et al., **IJPSSR**, 2011; Vol. 2(9): 2439-2445.

75. Hemant Sahu, Vivek Jain, Niraj Upmanyu, Subhendu S. Mishra and Navdeep Raghuvanshi; Formulation and evaluation of effervescent floating tablet of levofloxacin; **Scholars Research Library Der Pharmacia Lettre.**, 2011; 3 (6):272- 279.

76. S. Sathiyaraj, Ramya D. Devi, and Vedha B. N. Hari; Lornoxicam gastro retentive floating matrix tablets: Design and in vitro evaluation; **J Adv Pharm Technol Res.**, 2011 Jul-Sep; 2(3): 156–162

77. V.Wamorkar,A.Samar,AR.Reedy,Ch.Anusha,C.V.Saikrishna,N.Santosh kumar;; Developmopment aAnd Evaluation of Novel Foating Drug System of Metoclopramide; **International Journal of Pharmaceutical Sciences and Nanotechnology**; 2011;4(3).

78. Acharya & B.M Reddy College of Pharmacy, Chikkabanavara. Truman Fernandes, Divakar Goli, Kalyani Prakasam Research Journal of Pharmaceutical, Biological and Chemical Sciences Formulation and Evaluation of Floating Drug Delivery System Using an Anti-Asthmatic Drug of montelukast ; **RJPBCS**; 2012; 3 (2); 249.

79. K. N. Shaikh, S. A. Payghan and J. I. Desouza; Formulation of gastroretentive Drug Delivery System (floating tablets)of Nifedipine; .., **IJPSSR**, 2011; 2(11): 2929-2933.

80. Ashish Kumar Garg, Gaurav Kapoor, Rajesh; Kumar Sachdeva; Formulation and Evaluation of Nizatidine Floating Tablets; **American Journal Of Pharma Tech Research**; 2012; 2(6).

81. Mohan Guguloth,,Ramesh Bomma and Kishan Veerabrahma; Development of Sustained Release Floating Drug Delivery System for Norfloxacin: In Vitro and In Vivo Evaluation: **PDA Journal of Pharmaceutical Science and Technology**; 2011; 65 (3); 198-206.

82. Pramod Patil, Someshwara Rao B, Suresh V Kulkarni, Basavaraj, Chetan Surpur and Anand Ammanage;Formulation and *In Vitro* Evaluation of Floating Matrix Tablets of Ofloxacin; **Asian J. Res. Pharm. Sci.**, 2011; 1(1); 17-22.

83. Kishore Rapolu, Sathish Dharani and Madhusudan Rao Yamsa; Preparation and Evaluation of Multiple-unit gastroretentive Floating Drug Delivery System for Ondansetron hydrochloride based on gas foming technology; Yamsani, et al. **Int J Pharm** 2012; 2(1): 46-54.

84. Anilkumar J. Shinde , Manojkumar S. Patil and Harinath N. More; *I* Formulation and Evaluation of an Oral Floating Tablet of Cephalexin;; **Indian J.Pharm. Educ. Res.**, Jul-Sep, 2010; 44(3).

85. RD Kale, PT Tayade A multiple unit floating drug delivery system of piroxicam using eudragit polymer; **IJPSS**;2007 ;69(1);120-123.

86. Ratnaparkhi M.P.*, Bhabad V.S., Chaudhari S.P.; Designing and In-Vitro Evaluation of Gastro Retentive Drug Delivery System for Pregabalin; **International Journal of Pharm Tech Research**, 2012;4(3); 1041-1049.

87. S.K.Senthilkumar, B.Jaykar, S.Kavimani; Formulation and evalution of Gastro Retentive Floating drug delivery system of Rabeprazole; Senthil Kumar S.K. et al. **International Journal of Biopharmaceutics**, 2011; 2(2): 57-62.

88. V. Kamalakanan, M. Karthikraja, K. Ravi, M. Kathikeyan, K. G.S.Arul kumran1, A.Arunachalam4 Formulation and invitro evaluation of tinidazole effervescent floating tablets; **Journal of Pharmacy Research (New Journal BioMedRx)**; 2012;5(4).

89. Debajyotiray,Am. Ramesh K Prusty Design And Invitrostudies of Gastric Floating Tablets of Tramadol hydrochloride; **International Journal of Applied pharmaceutics** ; 2010; 2(4).

90. Marella Radhakrishna, K.G Parthiban, Nelluri Ramarao, Nagapuri santhosi deepika and Perumulla Abhishek; Formulation and evalution of Floating drug delivery system of Amoxylline Trihydrate; **IRJP**;2012;3(8).

91. Nirav Patel1Jinal Patel, Moin Modasiya.; Formulation and In Vitro Evaluation of Glipizide as Floating Drug Delivery System; **Asian J. Pharm. Tech.**, 2012; 2(2); 67-73 .

92. Abdul Hasan Sathali.A., Kathiravan.S; Formulation and characterization of floating microspheres of perindopril erbumine; Abdul Hasan Sathali.A et al. **Journal of Pharmacy Research**; 2012;5(4);1862-1871

93. H.M.Elnahas,K.M.Hosny;Chitosan based Floating Microspheres of Trimetanidine Dihydrochloride;Preparation and Invitro Characterization,; **International Journal of pharmaceutical Sciences**; 2013;393-403.

94. R.Parthibarajan,N.L.Gowrisankar,D.Prasanth,G.Pavani,J.Pavan,K.Madhavi,V. Mallikarjunrao; Formulation and Invitro Evaluation of floating microspheres of Acetazolamide; **International Journal of pharmacy and pharmaceutical Sciences**; 2013;5(1).

95. Shashikant D. Barhate,Yogesh S.Rupnar,Rupesh M.Sonavir,Kapil R.Pawar, Rahul kumar,D.Rahanae; Formulation and Evaluation of floating microspheres of Ketorolac Trometamol; **IJP RD**;2009;1(9).

96. Suresh Fartyal, Sajal Kumar Jha, Manvendra Singh Karchuli, Rohit Gupta, Ankit Vajpayee; Formulation and Evaluation of Floating Microspheres of Boswellic acid; **International Journal of PharmTech Research**;2011; 3(1); 76-81.