

ROLE OF ESTROGEN IN TREATMENT OF PROSTATE CANCER

**D.K. Katiyar¹, Pratap Shankar*¹, A.K. Verma², Amod Kumar Sachan¹,
Rakesh Kumar Dixit¹**

¹Department of Pharmacology and Therapeutics, King George's Medical University,
Lucknow, (U.P), INDIA-226003

²Department of Forensic Medicine & Toxicology, King George's Medical University,
Lucknow, (U.P), INDIA-226003

***Corresponding Author E-mail:** pratap.mbi@gmail.com

ABSTRACT

Prostate development and disease are androgen and estrogen dependent. However, the nature of hormonal effects on the prostate of healthy young men is not clear. Although the mechanism underlying the hormonal induction of prostate cancer remain uncertain. Estrogens have already been reported to stimulate proliferation of cultured prostate cancer cells, primarily through receptor-mediated effects. Estrogen therapy plays a role in the management of castration-resistant prostate cancer. Although the mechanism of action is not fully known. This current analysis reports the relationship of change in adrenal androgen levels and prostate-specific antigen response in patients with CRPC treated with estrogen therapy. Estrogen not only associated as ER-mediated effects, even by other activities like DNA, genetically etc. Antiestrogen can be best therapeutic agents for the prostate cancer prevention.

KEY-WORDS: Prostate Cancer, Estrogen, Estrogen Receptor

INTRODUCTION

Prostate cancer is the most common non-skin cancer in men (1). Human prostate cancer is generally known as androgen dependent while estrogen is also important in both the normal as well as malignant prostate. Locally produced or metabolically transformed estrogens may differently affect proliferative activity of prostate cancer cells. Prostate development and disease are androgen and estrogen dependent. However, the nature of hormonal effects on the prostate of healthy young men is not clear (2). In maintenance of structure and integrity of prostate androgens and estrogens plays important role after sexual maturity (3, 4). If we see the past of prostate cancer treatment, we will find that estrogens was primary treatment for the metastatic prostate cancer for many years but have been superceded in the past two decades by luteinizing hormone-releasing hormone (LHRH) agonists, primarily because of the cardiovascular toxicity associated with oral estrogen therapy (5-8).

Estrogens in combination with androgens appear to be required for the malignant transformation of prostate epithelial cells. Although the mechanism underlying the hormonal induction of prostate cancer remain uncertain. Estrogen has already been reported to stimulate proliferation of cultured prostate cancer cells, primarily through receptor-mediated effects. The importance of estrogen effects on the mature human prostate has been known for decades, although these effects are complex (9, 10). Jin and colleagues in 1996 (2), present study demonstrates that in genetic male transsexuals, chronic administration of high dose estrogens reduces total prostate volume.

Estrogen therapy plays a role in the management of castration-resistant prostate cancer (CRPC), although the mechanism of action is not fully known. This current analysis reports the relationship of change in adrenal androgen levels and prostate-specific antigen (PSA) response in patients with CRPC treated with estrogen therapy (11).

ESTROGEN RECEPTORS

There are two main receptors of the estrogens: i). ER α , ii). ER β . Both receptors are expressed in both normal and diseased human prostate. Both the receptors different functions eg. ligand binding, heterodimerization, transactivation, and estrogen response element activity. Their expression imbalance may change the estrogen effects on prostate cancer cells. ER β activation is directly linked with cell proliferation or to ER α inhibition and on other hand loss of the ER β consistently associated with tumor progression in prostate cancer. Only little amount of data is available regarding the expression and function of the Estrogen receptors in the human prostate (11).

With scenario regarding the estrogen receptor, ER β has challenged for the reevaluation of the estrogen role in the prostate carcinogenesis, with expression of ER β more than ER α in normal prostate epithelium and again loss of the expression of the ER β emphasizes on possible role in development of cancer (5).

PROSTATE CANCER & ESTROGENS

Evidences showed that plays an important role in predisposing or causing the prostate cancer (12-19). Elevated plasma estrogens are responsible for the risk of prostate cancer (20, 21). Some studies also mentioned just opposite finding, as

increasing prostate cancer risk associated with decreasing estradiol levels after adjusting for sex hormone-binding globulin (22), while some meta-analyses could not mention any link about increasing level of estrogen and risk of prostate cancer (23-25). When we talk about the prostate cancer risk in animal models, especially in rat, estrogen required condition for the prostate carcinogenesis, although rats do not naturally develop prostate cancer, it can be induced by combined treatment with estradiol and testosterone (26-28).

ESTROGEN METABOLISM

Estrogen plays important role from menstrual cycle and reproduction to modulation of bone density, brain function, cholesterol mobilization etc. (29-31). It has been clear from numerous studies association of estrogen with development and progression of several kinds of cancers mainly breast, endometrium, ovary, prostate, lung, and colon (31, 32). Estrogen is a classical etiological factor for prostate cancer. In this review, we focus on the estrogen mechanisms in prostate carcinogenesis with discussion on current anti-estrogen strategies in prostate cancer treatment.

MOLECULAR MECHANISMS

With respect to molecular mechanism of estrogen in prostate carcinogenesis, estrogen mediates its biological effects in prostate tissues by binding to specific intracellular receptors, estrogen receptor ER- α and ER- β (33). There are many studies to describe the complex molecular mechanisms of estrogen-ER action. This complex based on the ligand – protein complex formation and activated transcription factor to regulate expression of genes (34-36). ER α and ER β are encoded by *ESR1* and *ESR2*, respectively. These receptors ER α and ER β are widely expressed in tissues of prostate. ER α and

ER β are highly homologous in their DNA-binding domains and possess moderate sequence identity in their ligand-binding domains. Only they are different by the hormone-independent transcriptional activation function (37).

SIGNALING

Estrogen signaling in prostate cancer can be understood by the mechanism of carcinogenesis. With genetic marker mechanism of prostate cancer related with oncogenic effects of estrogens (38) with some newer treatments against prostate cancer based on regulating paracrine signaling within the tissue itself. It essential component of androgenic control of prostate cancer gland (39, 40). Being uncertain results of clinical trials against the prostate cancer yet also it is clear that estrogen signaling in prostate very complex by presence of only two receptors. These receptors appear to play significantly different roles in the prostate, with ER α mediating the adverse and ER β mediating the beneficial effects of estrogen (40).

PHYTOESTROGENS

In contrast with the use of plant products natural estrogens and dietary estrogen analogs has been proposed against the prostate cancer development as well as treatment. This can draw the interest of researchers towards the phyto-products as anti-cancer, mainly phytoestrogen for example one of the phytoestrogen from soy isoflavones as genistein (41).

GENOTOXIC ACTIVITY

In the growing body of evidence to suggest that estrogens might act as carcinogenic factors not only through the ER but also through a genotoxic mechanism (42). Some indications regarding site of cancer development have the lower no. of enzymes that protect against catecholestrogens and redox-cycling (43).

As conclusion we can say and give evidence from animal studies that estrogens can have genotoxic activity in the rat prostate and that this might be related to induction of cancer by estradiol plus testosterone. There are at present no human data in this regard.

ABLATION THERAPY

On the basis of observations in pre-clinical studies, estrogen ablation therapy has been proposed for prostate cancer treatment, mostly with cells in culture. *Selective ER modulators* (SERMs) as antiestrogens, are also used as ablation therapy.

CHEMOPREVENTION

It is a mechanism of inhibition of development of premalignant lesions or of their progression to cancer by pharmaceutical agents or nutriceutical compounds. For prostate it is widely used for already existing cancer (44). So as an important factors chemoprevention agents have multiple anti-cancer activities. For examples possibly SERMs might have multiple activity against prostate cancer. This might provide them with a broader spectrum of chemopreventive activity than pure antiestrogenic agents. At the same time, it is critical that SERMs used as chemopreventive agents are very safe and have no genotoxic or other adverse properties.

CONCLUSION

With conclusive remark we can directly link the Estrogens and ERs development and progression of prostate cancer. Estrogen not only associated as ER-mediated effects, even by other activities like DNA, genetically etc. And antiestrogen can be best therapeutic agents for the prostate cancer prevention.

REFERENCES

1. Carruba G (2007) Estrogen and prostate cancer: an eclipsed truth in an androgen-dominated scenario. *J Cell Biochem* 102(4):899-911.
2. Jin B, Turner L, Walters WAW, Handelsman DJ (1996) the effects of chronic high dose androgen or estrogen treatment on human prostate. *J Clin Endocrinol Metab* 81:4290-4295.
3. Huggins C, Hodges CV (1941) Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. *Cancer Res* 1:293-297.
4. Huggins C, Stevens RA (1940) The effect of castration on benign hypertrophy of the prostate in man. *J Urol* 43:705-714.
5. Oh WK (2002) the evolving role of estrogen therapy in prostate cancer. *Clin Prostate Cancer* 1(2):81-89.
6. Stefan Nilsson, Sari MaKela, Eckardt Treuter, Michel Tujague, Jane Thomsen, Go Ran Andersson, Eva Enmark, Katarina Pettersson, Margaret Warner, And Jan-Åke Gustafsson (2001) Mechanisms of Estrogen Action. *Physiological Reviews* 81(4):1535-1565.
7. Osborne C, Kent, Zhao Hong (Holly), Fuqua Suzanne AW (2000) Selective Estrogen Receptor Modulators: Structure, Function, and Clinical Use. *J Clin Oncol* 18:3172-3186.
8. Pirkko L Harkonen, Sari I Makela (2004) Role of estrogens in development of prostate cancer *Journal of Steroid Biochemistry & Molecular Biology* 92:297-305.
9. Santti R, Newbold RR, Makela S, Pylkkanen L, McLachlan JA (1994) Developmental estrogenisation and prostatic neoplasia. *Prostate* 24:67-78.

10. Thomas JA, Keenan EJ (1994) Effects of estrogens on the prostate. *J Androl* 15:97-99.
11. Aggarwal R, Weinberg V, Small EJ, Oh W, Rushakoff R, Ryan CJ (2009) The mechanism of action of estrogen in castration-resistant prostate cancer: clues from hormone levels. *Clin Genitourin Cancer* 7(3):E71-E76.
12. Nelles Jason L, Hu Wen-Yang, Prins Gail S (2011) Estrogen Action and Prostate Cancer. *Expert Rev Endocrinol Metab* 6(3):437-451.
13. Post-menopausal estrogen therapy (1992) *IARC Monogr Eval Carcinog Risks Hum* 72:399-530.
14. International Agency for Research on Cancer (1987) Monographs on the evaluation of carcinogenic risks to humans. *IARC Lyon France* 7:280-285.
15. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans: hormonal contraception and postmenopausal hormone therapy. (1999) *IARC Lyon France* 72.
16. Greenwald P, Caputo TA, Wolfgang PE (1977) endometrial cancer after menopausal use of estrogens. *Obstet Gynecol* 50:239-243.
17. Siiteri PK, Nisker JA, Hammond GL (1980) Hormonal basis of risk factors for breast and endometrial cancer. In: *Hormones and Cancer*. Iacobelli S, King RJB, Lindner HR, Lippman ME (Eds) Raven Press NY USA: 499-505.
18. Feigelson HS, Henderson BE (1996) Estrogens and breast cancer. *Carcinogenesis* 17:2279-2284.
19. Bernstein L (1998) The epidemiology of breast cancer. *LOWAC J* 1:7-13.
20. Barrett-Connor E, Garland C, McPhillips JB, Khaw KT, Wingard DL (1990) A prospective, population-based study of androstenedione, estrogens, and prostatic cancer. *Cancer Res* 50(1):169-173.
21. Modugno F, Weissfeld JL, Trump DL *et al.* (2001) Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. *Clin Cancer Res* 7:3092-3096.
22. Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ (1996) Prospective study of sex hormone levels and risk of prostate cancer. *J Natl Cancer Inst* 88:1118-1126.
23. Eaton NE, Reeves GK, Appleby PN, Key TJ (1999) Endogenous sex hormones and prostate cancer: a quantitative review of prospective studies. *Br J Cancer* 80:930-934.
24. Platz EA, Leitzmann MF, Rifai *et al.* (2005) Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. *Cancer Epidemiol Biomarkers Prev* 14:1262-1269.
25. Wiren S, Stocks T, Rinaldi S, Hallmans G *et al.* (2007) Androgens and prostate cancer risk: a prospective study. *Prostate* 67:1230-1237.
26. Ho SM, Roy D (1994) Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolateral prostates of Noble rats. *Cancer Lett* 84:155-162.
27. Leav I, Ho SM, Ofner P, Merk FB, Kwan PW, Damassa D (1988) Biochemical alterations in sex hormone-induced hyperplasia and dysplasia of the dorsolateral prostates of Noble rats. *J Natl Cancer Inst* 80:1045-1053.

28. Bosland MC, Ford H, Horton L (1995) Induction of a high incidence of ductal prostate adenocarcinoma in NBL and Sprague Dawley rats treated with estradiol-17 β or diethylstilbestrol in combination with testosterone. *Carcinogenesis* 16:1311–1317.

29. Koos RD (2011) Minireview: putting physiology back into estrogens' mechanism of action. *Endocrinology* 152:4481–4488.

30. Shang Y (2006) Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. *Nat Rev Cancer* 6:360–68.

31. Shang Y (2007) Hormones and cancer. *Cell Res* 17:277–279.

32. Folkerd EJ, Dowsett M (2010) Influence of sex hormones on cancer progression. *J Clin Oncol* 28:4038–4044.

33. Jensen EV, Jacobson HI, Walf AA, Frye CA (2010) Estrogen action: a historic perspective on the implications of considering alternative approaches. *Physiol Behav* 99:151–162.

34. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, et al (2007) Estrogen receptors: How do they signal and what are their targets. *Physiol Rev* 87:905–31.

35. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. *Mol Endocrinol* 19:833–842.

36. Hammes SR, Levin ER. 2011. Minireview: recent advances in extranuclear steroid receptor actions. *Endocrinology* 152:4489–4495.

37. Liang Jing, Shang Yongfeng (2013) Estrogen and Cancer. *Annu Rev Physiol* 75:225–240.

38. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. *Endocr Relat Cancer* 12(1):47–59.

39. Cunha GR, Donjacour A (1987) Stromal–epithelial interactions in normal and abnormal prostatic development. *Progress in Clinical and Biological Research* 239:251–272.

40. Gail P Risbridger, Stuart J Ellem, Stephen J McPherson (2007) Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. *Journal of Molecular Endocrinology* 39:183–188.

41. Bosland Maarten C (2005) the Role of Estrogens in Prostate Carcinogenesis: A Rationale for Chemoprevention. *Reviews in Urology* 7(3):S4-S10.

42. Cavalieri E, Frenkel K, Liehr JG, et al. (2000) Estrogens as endogenous genotoxic agents—DNA adducts and mutations. *J Natl Cancer Inst Monogr* 27:75–93.

43. Cavalieri EL, Devanesan PD, Bosland MC, et al. (2002) Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer. *Carcinogenesis* 23:329–333.

44. Bosland MC, McCormick DL, Melamed J, et al. (2002) Chemoprevention strategies for prostate cancer. *Eur J Cancer Prev* 11(2):S18–S27.