

A REVIEW ON ANALYTICAL METHOD FOR DETERMINATION OF CALCIUM CHANNEL BLOCKER IN DIFFERENT DOSAGE FORMS

**Zeel T. Doshi,
Jignesh S. Shah*,
Dilip G. Maheshwari**

*Department of Quality Assurance and Pharm Regulatory Affairs,
L. J Institute of Pharmacy,
Ahmedabad,
Gujarat, 382210, India*

ABSTRACT

Calcium channel blockers (CCBs) or Calcium antagonists are among the most widely used drugs in cardiovascular medicine with roles not only in hypertension but also in angina. CCBs promote vasodilator activity by reducing calcium influx into vascular smooth muscle cells by interfering with voltage-operated calcium channels in the cell membrane. Interference with intracellular calcium influx is also important in cardiac muscle, cardiac conduction tissue and gastrointestinal smooth muscle. It includes drugs like Amlodipine, Diltiazem, Felodipine, Isradipine, Lacidipine, Lercanidipine, Nicardipine, Nifedipine, Nisoldipine and Verapamil. This Review enlists different method developed for determination of Calcium channel blocker like U.V. Spectrophotometric, HPLC, RP-HPLC, LC-MS/MS.

Key Words: Calcium channel blocker, Hypertension, Spectrophotometric

INTRODUCTION^[1]:

Calcium channel blockers (CCBs) are another class of first line antihypertensive in. All 3 subgroups of CCBs dihydropyridine (Nifedipine), phenylalkylamine and benzothiazepine are equally efficacious antihypertensive. They lower BP by decreasing peripheral resistance without compromising CO. despite vasodilatation, fluid retention is insignificant. The onset of antihypertensive action is quick. With the availability of long acting preparations, most agents can be administered once a day. Mono therapy with CCBs is effective in ~50% hypertensive, their action is independent of patient's rennin status, and they may improve arterial compliance. Other advantages of CCBs are:

1. Do not compromise haemodynamic: No impairment of physical work capacity.
2. No sedation or other CNS effect; cerebral perfusion is maintained: compatible with intense mental activity.
3. No contraindicated in asthma, angina (specially variant) and PVD patients: may benefit these conditions. Do not impair renal perfusion.
4. Do not affect male sexual function. No deleterious effect on plasma lipid profile, uric acid level and electrolyte balance.
5. Shown to have no\minimal effect on quality of life. No adverse foetal effects noted: Can be used during pregnancy (but can weaken uterine contractions during labour).

CCBs promote vasodilator activity by reducing calcium influx into vascular smooth muscle cells by interfering with voltage-operated calcium channels in the cell

Address for correspondence

Jignesh S. Shah *
*Department of Quality Assurance and
Pharm Regulatory Affairs,
L. J Institute of Pharmacy,
Ahmedabad, Gujarat, 382210, India
E-mail: jss192@gmail.com*

membrane. Interference with intracellular calcium influx is also important in cardiac muscle, cardiac conduction tissue and gastrointestinal smooth muscle. In cardiac tissues, CCBs have potential for negative inotropic, chronotropic and dromotropic activity while the gastrointestinal effects predispose to constipation. These effects vary with different agents according to ability to penetrate cardiac and other tissues, relative affinity for calcium channels in different tissues and the influence of reflux cardiac stimulation secondary to peripheral vasodilation. There are 3 types of calcium channels.

(a) Voltage sensitive channel: Activated when membrane potential drop to around -40 mV or lower.

(b) Receptor operated channel: Activated by Adr and other agonists-independent of membrane depolarization.

(c) Leak channel: small amounts of Ca^{2+} leak into the resting cell and are pumped out by Ca^{2+} ATP ase.

Reported methods are categorized depending on the following considerations:

1. Single component Calcium channel blocker analyzed by UV-Spectroscopy methods and Chromatographic method.
2. Analysis of Calcium channel blocker with combination with other class drugs by UV-Spectroscopy methods and Chromatographic method

Table 1: Analysis of single component of Calcium channel blocker by UV-Spectroscopy methods

Sr. no.	Drug	Method	Description	Ref
1	Estimation of Amlodipine besylate in tablets	UV spectroscopic Method	Detection wavelength: 366 nm Linearity range: 5-25 $\mu\text{g}/\text{ml}$. Co-relation co-efficient: 0.999. LOD: 0.136 LOQ: 0.400	2
2	Validation of Cilnidipine	UV spectroscopic Method	Detection wavelength: 240 nm Linearity range: 3-18 $\mu\text{g}/\text{ml}$ Co-relation co-efficient: 0.9994 % Recovery range: 98.0%-102.0%	3
3	Isradipine Loaded into Solid Lipid Nanoparticles	UV Spectroscopic Method	Detection wavelength: 327 nm Linearity range: 5-30 $\mu\text{g}/\text{ml}$ Co-relation co-efficient: 0.999 % Recovery range: 100.08% LOD: 0.1115 $\mu\text{g}/\text{ml}$ LOQ: 0.3378 $\mu\text{g}/\text{ml}$	4
4	Nicardipine hydrochloride in bulk and formulation	UV Spectroscopic Method	Detection wavelength: 235 nm Linearity range: 5-25 $\mu\text{g}/\text{ml}$ Co-relation co-efficient: 0.999 % Recovery range: 98.8-101.5% LOD: 0.1032 $\mu\text{g}/\text{ml}$ LOQ: 0.3130 $\mu\text{g}/\text{ml}$	5
5	Nimodipine in Bulk and Tablet Formulation	UV Spectroscopic Method	Detection wavelength: 238.5 nm Linearity range: 5-30 $\mu\text{g}/\text{ml}$ Co-relation co-efficient: 0.9981 % Recovery range: 100.001% LOD: 0.7469 $\mu\text{g}/\text{ml}$ LOQ: 2.26 $\mu\text{g}/\text{ml}$	6

Table 2: Analysis of Calcium channel blocker with combination with other drugs by UV spectroscopy

Sr.no	Drug	Method	Description	Ref.
6.	Amlodipine and Losartan in bulk drug and tablet dosage formulation	Simultaneous Estimation of UV-Spectroscopic Method	Detection wavelength: Amlodipine besylate: 237 nm Losartan potassium: 202 nm Linearity range: Amlodipine besylate: 1.257.5 μ g/ml Losartan potassium: 12.5-75 μ g/ml Co-relation co-efficient: Amlodipine besylate: 0.998 Losartan potassium: 0.999 % Recovery range: 97.3-102.3% LOD: Amlodipine besylate: 0.02 μ g/ml Losartan potassium: 0.03 μ g/ml LOQ: Amlodipine besylate: 0.03 μ g/ml Losartan potassium: 0.05 μ g/ml	7
7.	Amlodipine Besylate and Bisoprolol Fumarate in Pharmaceutical Preparations	UV Spectrophotometric Method	Detection wavelength: Amlodipine besylate: 222 nm Bisoprolol fumarate: 365 nm Linearity range: Amlodipine besylate: 5-100 μ g/ml Bisoprolol fumarate: 5-100 μ g/ml Co-relation co-efficient: 0.999 % Recovery range: Amlodipine besylate: 99.33-99.61% Bisoprolol fumarate: 100.28-100.80% LOD: Amlodipine besylate: 4.31 μ g/ml Bisoprolol Fumarate: 13.07 μ g/ml LOQ: Amlodipine besylate: 1.45 μ g/ml Bisoprolol Fumarate: 4.42 μ g/ml	8
8	Cilnidipine and Telmisartan in tablet dosage form	UV Spectrophotometric Method for the Simultaneous Estimation and Absorbance Ratio Method	Simultaneous Equation Method Detection wavelength: Cilnidipine: 240 nm Telmisartan: 297nm Linearity range: Cilnidipine: 4-10 μ g/ml Telmisartan: 6-18 μ g/ml Co-relation co-efficient: Cilnidipine: 0.9998 Telmisartan: 0.9992 Q-Absorbance Ratio Method Detection wavelength: 270 nm Linearity range: Cilnidipine: 4-10 μ g/ml Telmisartan: 6-18 μ g/ml Co-relation co-efficient: Cilnidipine: 0.9998 Telmisartan: 0.9990	9
9	Estimation of Nebivolol and Cilnidipine in Pharmaceutical Formulation	First Order Derivative UV Spectrophotometric Method	Detection wavelength: Nebivolol: 221.6 nm Cilnidipine: 249 nm Linearity range:	10

			Nebivolol: 4-20 Cilnidipine: 5-25 Co-relation co-efficient: Nebivolol: 0.999 Cilnidipine: 0.998	
10	Atorvastatin Calcium and Felodipine from Tablet Dosage Form	Dual Wavelength Spectrophotometric Method for Simultaneous Estimation	Detection wavelength: Atorvastatin Calcium: 245 nm Felodipine: 268 nm Mobile Phase: Acetonitrile: Double Distilled Water (70:30) Linearity range: Atorvastatin Calcium: 20-100 µg/ml Felodipine: 2-12 µg/ml	11
11.	Metoprolol and Amlodipine in bulk and Their formulation	UV-spectrophotometric method for simultaneous Estimation	Detection wavelength: Metformin: 223 nm Amlodipine: 240 nm Linearity range: Metformin: 10-90 µg/ml Amlodipine: 1-60 µg/ml Co-relation co-efficient: 0.999 % Recovery range: Metformin: 99.78% Amlodipine: 99.82%	12
12	Atenolol and Lercanidipine Hydrochloride in combined dosage form	Ratio Derivative and Dual Wavelength Method	Ratio Derivative (Method A) Detection wavelength: Atenolol: 266.98 nm Lercanidipine Hydrochloride: 386.97 nm Linearity range: Atenolol: 25-125 µg/ml Lercanidipine Hydrochloride: 5-25 µg/ml Co-relation co-efficient: Atenolol: 0.99985 Lercanidipine Hydrochloride: 0.99971 Dual Wavelength (Method B) Detection wavelength: Atenolol: 234.01 nm and238.66nm Lercanidipine Hydrochloride: 253.33 nm and286.07nm Linearity range: Atenolol: 50-90 µg/ml Lercanidipine Hydrochloride: 10-18 µg/ml Co-relation co-efficient: Atenolol: 0.99983 Lercanidipine Hydrochloride: 0.99979	13
13	Nifedipine and Atenolol in Combine Dosage Forms	Simultaneous Estimation of UV-Spectroscopic Method	Detection wavelength: Nifedipine: 341.2 nm Atenolol: 273.8 nm Linearity range: Nifedipine: 2-10 µg/ml Atenolol: 5-25 µg/ml LOD: Nifedipine: 0.273 µg/ml Atenolol: 0.159 µg/ml LOQ: Nifedipine: 0.824 µg/ml, Atenolol: 0.483	14

14	Nifedipine and Metoprolol Succinate in Their Synthetic Mixture	Simultaneous Estimation of UV-Spectroscopic Method	Detection wavelength: Nifedipine: 313 nm Metoprolol Succinate: 275.40 nm Linearity range: Nifedipine: 5-25 µg/ml Metoprolol Succinate: 25-125 µg/ml % Drug Recovery: Nifedipine: 100.68 Metoprolol Succinate: 100.33	15
15	Nifedipine and Metoprolol Succinate in Their Synthetic Mixture	Spectrophotometry	Detection wavelength: Nifedipine: 313 nm Metoprolol Succinate: 275.40 nm Linearity range: Nifedipine: 5-25 µg/ml Metoprolol Succinate: 25-125 µg/ml % Drug Recovery: Nifedipine: 100.68 Metoprolol Succinate: 100.33	16
16	Nifedipine and Candesartan Cilexetil in Synthetic Mixture	Simultaneous Estimation of UV-Spectroscopic Method	Detection wavelength: Nifedipine: 235nm Candesartan Cilexetil: 255nm Linearity range: Nifedipine: 6-21µg/ml Candesartan Cilexetil: 3.2-11.2µg/ml Co-relation co-efficient: Nifedipine: 0.999 Candesartan Cilexetil: 0.998 % Recovery range: Nifedipine: 98-102%. Candesartan Cilexetil: 98-102%	17

Table 3: Analysis of single component Calcium channel blocker by chromatographic method

Sr.no.	Drug	Method	Description	Ref
17	Cilnidipine, a new calcium antagonist, in human plasma	high performance liquid chromatography with tandem mass spectrometric detection	Internal standard: Nimodipine Column: C ₁₈ column Mobile phase: CH ₃ OH : NH ₄ Ac (96:4 v/v). Linearity range: 0.1–10 ng mL ⁻¹ Co-relation co-efficient: 0.9994 Run time: 3 min	18
18	Felodipine in bulk and pharmaceutical dosage form	RP-HPLC Method	Detection wavelength: 238 nm Stationary phase: C ₁₈ (150 x 4.6 mm i.d. of 5) coupled with guard column Mobile phase: Acetonitrile: Water 70:30 Run time: 10 min Retention time: 8.29 min % RSD: <2%	19
19	Felodipine In Rat Plasma	RP-HPLC Method	Detection wavelength: 260 nm Stationary phase: Spherisorb ODS column(250mm x 4.6mm, 5 µm) Mobile phase: Methanol:Water 80:20 %v/v Linearity: 50 ng - 150 ng/ml LOD: 25 ng/ml	20

			LOQ: 50ng/ml Correlation coefficient: 0.9943 Run time: 0.9 ml/min Retention time: 9.94 min	
20	Amlodipine in human plasma	Liquid Chromatography Tandem Mass Spectrometry Method (LC-MS/MS)	Internal standard: Imipramine Column: Hypersil BDS C ₁₈ column Linearity range: 0.1–10.0 ng/mL Recovery: 63.67% Run time: 3.2 min	21
21	Estimation of Felodipine in human plasma	LC-MS Method and Stability studies of freeze thaw analyte	Internal standard : Pantaprazole Stationary phase: Princeton SPHER C ₁₈ (150 x 4.6 mm i.d. of 5) Mobile phase: Acetonitrile : 2mM ammonium acetate Elution mode : Isocratic A: B= 80:20% v/v Flow rate: 0.8 ml/min Linearity range: 0.8-13.0ng/ml Retention factor : 2.97 Felodipine: LOD: 0.10 ng/ml LOQ: 0.50 ng/ml Pantaprazole: LOD: 0.06 ng/ml LOQ: 0.21 ng/ml	22

Table 4: Analysis of Calcium channel blocker with combination with other drugs by Chromatographic methods

Sr.no	Drug	Method	Description	Ref
22	Amlodipine besylate and Olmesartan medoxomil from tablet	RP-HPLC Method	Detection Wavelength: 248 nm Mobile phase: Acetonitrile: water 60:40 Flow rate: 1.0 ml/min Retention time: 3.69 & 4.90 min for Metformin Hydrochloride and Sitagliptin Phosphate respectively. Linearity range: 5-35 µg ml-1 Mean percent recovery: Olmesartan medoxomil: 99.75 % to 100.62 % Amlodipine besylate: 98.91 % to 102.05 %	23
23	Valsartan and Amlodipine in Capsule Formulation.	Stability Indicating RP-HPLC Method	Detection wavelength: 234 nm Stationary phase: RP C ₁₈ Column (Kromasil, 250 x 4.6 mm) Mobile phase: Acetonitrile: Phosphate buffer (0.02M, pH 3.0), (56:44 v/v) Flow rate: 1.0 ml/min Retention time: Amlodipine: 3.07 min Valsartan: 6.20 min	24
24	Amlodipine and Benazepril hydrochloride from	Stability indicating RP-HPLC Method	Detection wavelength: 240 nm Stationary phase: Zorbax SB C ₁₈ , 5 µm, 250 mm x 4.6 mm	25

	their combination drug product		Mobile phase: Phosphate buffer: Acetonitrile 65:35 (v/v) Linearity: Amlodipine: 6–14 µg/ml Benazepril hydrochloride: 12–28 µg/ml Mean percent recovery: Amlodipine: 99.91 Benazepril hydrochloride: 100.53%	
25	Chlorthalidone and Cilnidipine in bulk and combined tablet dosage form	RP-HPLC Method	Detection wavelength: 240 nm Stationary phase: Inertsil ODS 3V (250 × 4.6 mm, i.d., 5 µm) Mobile Phase: 0.025 M Potassium dihydrogen orthophosphate buffer whose pH was adjusted to 2.5 using dilute orthophosphoric acid (solvent A) and Acetonitrile (solvent B) Linearity range: Chlorthalidone: 200-600 µg/ml Cilnidipine: 160-480 µg/ml Regression coefficient(r²): 0.999 LOD: Chlorthalidone: 0.50 µg/ml Cilnidipine: 0.40 µg/ml LOQ: Chlorthalidone: 1.50 µg/ml Cilnidipine: 1.20 µg/ml Retention time: Chlorthalidone: 3.872 minutes Cilnidipine: 7.668 minutes Flow rate: 1 ml/min	26
26	Cilnidipine and Olmesartan medoxomil in their combined tablet dosage form	RP-HPLC METHOD	Detection wavelength: 265 nm Stationary phase: C18 (250 x 4.6mm, 5 µm in particle size) Mobile Phase: Acetonitrile:Buffer (75:25 %v/v) pH 6.5 adjusted by 1 % Triethylamine Linearity range: Cilnidipine: 10-90 µg/ml Olmesartan medoxomil: 20-180 µg/ml for LOD: Cilnidipine: 0.130 Olmesartan medoxomil: 0.790 LOQ: Cilnidipine: 0.395 Olmesartan medoxomil: 2.397 Correlation coefficient: Cilnidipine: 0.9982 Olmesartan medoxomil: 0.9951 Retention time: Cilnidipine: 2.655 min Olmesartan medoxomil: 4.720 min Flow rate: 1 ml/min	27
27	Cilnidipine and Telmisartan in combined tablet dosage form	RP-HPLC Method	Detection wavelength: 245 nm Stationary phase: HiQ sil C18 HS column (250 × 4.6 mm i.d.) Mobile Phase: Methanol: 40 mM	28

			Potassium dihydrogen ortho phosphate buffer (pH 3) (90:10, v/v)) Linearity range: Cilnidipine: 1-10 $\mu\text{g mL}^{-1}$ Telmisartan: 5-30 $\mu\text{g mL}^{-1}$ LOD: Cilnidipine: 0.60 $\mu\text{g mL}^{-1}$ Telmisartan: 0.28 $\mu\text{g mL}^{-1}$ LOQ: Cilnidipine: 1.81 $\mu\text{g mL}^{-1}$ Telmisartan: 0.86 $\mu\text{g mL}^{-1}$ Correlation coefficient: Cilnidipine: 0.996 Telmisartan: 0.999 % Recovery: Cilnidipine: 99.60-99.83 Telmisartan: 99.40-100.39	
28	Atenolol and Nitrendipine in Tablet Dosage Form	RP-HPLC Method	Detection wavelength: 235 nm Stationary phase: Phenomenex C-18 column having dimensions of 4.6×250 mm and particle size of 5 μm . Mobile Phase: Methanol: Acetonitrile: Water (40:40:20 v/v) Linearity range: Atenolol: 30-70 $\mu\text{g/ml}$ Nitrendipine: 6-14 $\mu\text{g/ml}$ LOD: Atenolol: 1.96 $\mu\text{g/ml}$ Nitrendipine: 0.34 $\mu\text{g/ml}$ LOQ: Atenolol: 5.95 $\mu\text{g/ml}$ Nitrendipine: 1.03 $\mu\text{g/ml}$ Retention time: Atenolol: 2.61 min Nitrendipine: 6.11 min % Recovery: Atenolol: 99.05-100.51% Nitrendipine: 99.14-101.60% Flow rate: 1.5 ml/min	29
29	Atenolol and Nifedipine in pharmaceutical dosage forms	RP-HPLC Method	Detection wavelength: 235nm Mobile Phase: Methanol: Acetonitrile: Water (60:20:20) Stationary Phase: ODS C ₁₈ column Linearity: Nifedipine : 2-10 $\mu\text{g/ml}$ Atenolol: 5-25 $\mu\text{g/ml}$ Flow rate: 1.0ml/min	30
30	Nifedipine and dehydro-nifedipine in human plasma	Liquid chromatography tandem mass spectrometry	Mobile Phase: Methanol : 50 mM ammonium acetate solution (50:50, v/v). Stationary Phase: RP-18 (4 μm) Linearity range: 0.5-100 ng/ml	31

31	Nifedipine and Atenolol in capsule formulation	RP-HPLC Method	Detection wavelength: 237 nm Mobile Phase: 0.01M phosphate buffer solution: Methanol (50:50 v/v, pH 4.0) Stationary Phase: ODS metaphase C ₁₈ -250×4.6 mm Retention time: Atenolol : 1.8 min Nifedipine : 7.7 min	37
----	--	----------------	---	----

CONCLUSION:

This Review represents the Reported Spectrophotometric and Chromatographic Methods Developed and Validated for determination of Calcium channel blocker in different Dosage Forms. Here Calcium channel blocker shows the simple, accurate, precise method development of the different drug formulations. The blocker, HPLC, RP-HPLC, and LC-MS/MS.

ACKNOWLEDGEMENT:

The Authors are thankful to Dr. K. Pundarikakshudu, Director of L. J. Institute of Pharmacy, Ahmedabad, India for providing all the facilities and encouragement to carry out the work.

REFERENCES:

1. KD Tripathi., Essential of Medical Pharmacology. 6th Edition., Jaypee Brother Medical Publisher (P) Ltd., 543-544.
2. BH. Rajesh Varma1, Praveen Kumar Jampana, G. Raveendra Babu, P. Sri Lakshmi Surekha, T. Kala Praveen and P. Sambhasiva Rao, "UV Spectroscopic Method for Estimation of Amlodipine Besylate in Tablets" International Journal of Pharmaceutical, Chemical and Biological Sciences. 2014, 4(1), 69-73.
3. Pankaj P. Chaudhari and A. V. Bhalerao, "Method Validation for Spectrophotometric Estimation of Cilnidipine" International Journal of Pharmacy and Pharmaceutical Sciences. 2012, 4(5), 96-98.
4. Hitesh Katariya and Jagruti Prajapati, "Development and Validation of UV Spectrophotometric Method for Determination of Isradipine Loaded into Solid Lipid Nanoparticles" International Journal of Pharmaceutical Sciences Review and Research. 2013, 20(2), 162-166.
5. Amala Mateti, Kiran Aarely, Manish Kumar Thimmaraju and N. Raghunandan, "Method Development and Validation of Nicardipine Hydrochloride in bulk and formulation using UV Spectrophotometric Method" Journal of Chemical and Pharmaceutical Research. 2012, 4(7), 3688-3694.
6. Sandeep Lahot and Sanjay Toshniwal, "Development and Validation of UV Spectrophotometric Method of Nimodipine in Bulk and Tablet Formulation" Asian Journal of Bio medical and Pharmaceutical Sciences. 2012, 2(7).
7. Ramya Gavini, S. B. Puranik, G. V. S. Kumar*, K. A. Sridhar1 and Ramya Gavini, "Simultaneous estimation of amlodipine and losartan by UV-method in bulk drug and tablet dosage formulation" Scholars Research Library. 2012, 4(5), 2206-2212.
8. RB Kakde, VH Kotak, AG Barsagade, NK Chaudhary and DL Kale, "Spectrophotometric Method for Simultaneous Estimation of Amlodipine Besylate and Bisoprolol Fumarate in Pharmaceutical Preparations" Research J. Pharm. and Tech. 2008, 1(4), 513-515.
9. M.Haripriya, Neethu Antony and P. Jayasekhar, "Development and Validation of UV Spectrophotometric Method for the Simultaneous Estimation of Cilnidipine and Telmisartan in Tablet Dosage form utilising Simultaneous Equation and Absorbance Ratio Method" International Journal of Pharmacy and Biological Sciences. 2013, 3(1), 343-348.
10. Ms. Krupa Chaitanya Thula, "Development and Validation of First Order Derivative UV Spectrophotometric Method For Simultaneous Estimation of Nebivolol and Cilnidipine in Pharmaceutical Formulation" International Journal of Pharmaceutical Sciences Review and Research. 2015, 31(1), 243-247.
11. Namdeo, "Dual Wavelength Spectrophotometric Method for Simultaneous Estimation of Atorvastatin Calcium and Felodipine from Tablet Dosage Form" Advances in Chemistry. 2014.

12. Satyanarayana Rath, Susanta Kumar Panda, Rashmi Ranjan Sarangi, Arun Kumar dash, Sangram Kumar Rath and Srikant Nayak, "UV-Spectrophotometric Method for Simultaneous Estimation of Metoprolol and Amlodipine in Bulk and their Formulation" International Journal of Biological & Pharmaceutical Research. 2011, 2(2), 50-54.

13. Vishnu P. Choudhari, Vishnu M. Suryawanshi, Rashmi H. Mahabal, Sayali G. Deshchougule, Kishor P. Bhalerao and Bhanudas S. Kuchekar, "Simultaneous Spectrophotometric Estimation of Atenolol and Lercanidipine Hydrochloride in Combined Dosage form by Ratio Derivative and Dual Wavelength Method" International Journal of Pharmaceutical Sciences Review and Research. 2010, 3(1), 73-76.

14. Shelke O. S., Sable K. "Development and Validation of a UV Spectrophotometric Method for the Simultaneous Determination of Nifedipine and Atenolol in Combine Dosage Form" International Research Journal of Pharmacy. 2012, 3(4), 360-364.

15. Sojitra Rajanit1, "Absorbance Correction Method for Simultaneous Estimation of Nifedipine and Metoprolol Succinate in Their Synthetic Mixture Using From Spectrophotometry" International Journal of Pharma Sciences and Research. 2015, 6(3), 552-557.

16. Pinakin K Patel and Dipti B Patel, "Simultaneous Estimation of Nifedipine and Lidocaine in Cream by First Order Derivative Spectrophotometric Method" Inveni Rapid: Pharm Analysis & Quality Assurance. 2013, 2013(3), 1-5.

17. Priyanka A. Dhobi. and Jignasa Modi, "Development and Validation of UV-Spectrophotometric Method for Simultaneous Estimation of Nifedipine and Candesartan Cilexetil in Synthetic Mixture" Journal of Pharma Research. 2015, 4(3), 112-115.

18. Xianhua Zhang, Suodi Zhai, Rongsheng Zhao, Jin Ouyangb and Xiaoguang Lia, "Determination of cilnidipine, a new calcium antagonist, in human plasma using high performance liquid chromatography with tandem mass spectrometric detection" Analytica Chimica Acta. 2007, 600 (1-2), 142-146.

19. Dhale Chaitali, Joshi Suhas, Shete Shubhangi, "Development and validation for the estimation RP-HPLC Method For Analysis Of Felodipine in Bulk And Pharmaceutical dosage form." Int.Res.J.Pharm. 2014, 5(10), 772-774.

20. Minal Raghunath Narkhede, Bhanudas Shankar Kuchekar, and Jitendra Yadav Nehete, "Development And Validation Of RP-HPLC Method For Estimation Of Felodipine In Rat Plasma." Analytical Chemistry : An Indian Journal.8(4), 506-510

21. Jignesh Bhatt, Sadhana Singh, Gunta Subbaiah, Bhavin Shah, Sandeep Kamblu and Suresh Ameta, "A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the estimation of amlodipine in human plasma" Biomedical chromatography. 2007, 21(2), 169-175.

22. V.Sreedevi, Putta Rajesh Kumar and Rajesh Thatavarti, "LC-MS Method Development and validation for the estimation of Felodipine in human plasma and Stability studies of freeze thaw analyte." IJPSR. 2011, 2(2), 65-73

23. Pournima s. patil, "RP-HPLC Method for Simultaneous Estimation of Amlodipine Besylate and Olmesartan Medoxomil from Tablet" International Journal of Pharmacy and Pharmaceutical Sciences. 2012, 3(3), 146-149.

24. Chitlange SS, Bagri Kiran and Sakarkar DM, "Stability Indicating RP- HPLC Method for Simultaneous Estimation of Valsartan and Amlodipine in Capsule Formulation" Asian Journal of Research in Chemistry. 2008, 1(1), 15-18.

25. K. Raghu Naidu, Udhav N. Kale and Murlidhar S. Shingare, "Stability indicating RP-HPLC Method for Simultaneous Determination of Amlodipine and Benazepril Hydrochloride from their Combination Drug Product" Journal of Pharmaceutical and Biomedical Analysis. 2005, 39(1-2), 147-155.

26. Neelima Kudumula and Y. Rajendra Prasad, "Development and validation of RP-HPLC Method for the Simultaneous Estimation of Chlorthalidone and Cilnidipine in Bulk and Combined tablet dosage form" Pharmacophore. 2014, 5(4), 442-450.

27. Sidhdhapara Mital J, Biraju Patel & Ashok Paramar, "Development and Validation of RP-HPLC Method for Simultaneous Estimation of Cilnidipine

and Olmesartan Medoxomil in their Combined Tablet Dosage Form” International Journal of Pharmacy and Biological Sciences. 2014, 4(1), 157-160.

28. Prajakta Pawar and Santosh V. Gandhi, Padmanabh B. Deshpande, Suvarna Vanjari and Swapnil U. Shelar, “Simultaneous RP-HPLC Estimation of Cilnidipine and Telmisartan in Combined Tablet Dosage Form” Der Chemica Sinica. 2013, 4(2), 6-10.

29. M. V. Kumudhavalli, K. Anand Babu and B. Jayakar, “Development and validation of a RP-HPLC Method for Simultaneous Estimation of Atenolol and Nitrendipine in Tablet Dosage Form” Der Pharma Chemica. 2011, 3 (4), 63-68.

30. Vidyadhara, R.L.C.Sasidhar, B. Praveen Kumar, N.T. Ramarao and N. Sriharita, “Method Development and Validation for Simultaneous Estimation of Atenolol and Nifedipine in Pharmaceutical Dosage Forms by RP-HPLC” Oriental Journal of Chemistry. 2012, 28(4), 1691-1696.

31. B Streela, C Zimmeira, R Sibenaler and A Ceccatob, “Simultaneous Determination of Nifedipine and Dehydronifedipine in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry” Journal of Chromatography B: Biomedical Sciences and Applications. 1998, 720(1-2), 119–128.

32. Streel B, Zimmer C, Sibenaler R and Ceccato A, “Simultaneous Determination of Nifedipine and DehydroNifedipine in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry.” J. Chrom. B: BioMed. Sci. App. 1998, 19, 119-128.

How to cite this article:

Zeel T. Doshi, Jignesh S. Shah*, Dilip G. Maheshwari, **A Review on analytical method for determination of calcium channel blocker in different dosage forms**, 6 (3): 2829 – 2839 (2015)

All © 2010 are reserved by Journal of Global Trends in Pharmaceutical Sciences.