

METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF OLMESARTAN MEDOXOMIL AND METOPROLOL TARTRATE IN BULK AND SOLID DOSAGE FORM BY RP-HPLC.

Malla. Gowthami*, M. S. M. Suma, P.V. Madhavi Latha, A. Ragasudha Sri, P. Uma Devi

Department of Pharmacy, Viswanadha Institute of Pharmaceutical Sciences, Affiliated to JNTUK, Vizag- 530009, Andhra Pradesh, INDIA

*Corresponding Author E-mail:visit2gowthu@gmail.com

ARTICLE INFO

Key Words

RP-HPLC, Olmesartan Medoxomil, Metoprolol Tartrate

Access this article online

Website:

<https://www.jgtps.com/>

Quick Response Code:

ABSTRACT

A simple, Accurate, precise technique was developed for the simultaneous estimation of Olmesartan Medoxomil and Metoprolol Tartrate in bulk and solid dosage form. Chromatogram was run through Symmetry Xterra- C₁₈, BDS column (150 x 4.6mm, 5 μ) column. Mobile phase containing Phosphate Buffer (pH-2.8) and Acetonitrile taken in the proportions 35:65 v/v was pumped through column at flow rate of 0.5 ml/min. Temperature was maintained Ambient. Optimised wavelength selected was 284nm. Retention time of Olmesartan Medoxomil and Metoprolol Tartrate were observed to be 3.624min and 5.178min. %RSD of the Olmesartan Medoxomil and Metoprolol Tartrate were observed to be 0.39 and 0.86 respectively. %Recovery was obtained as 99.69% for Olmesartan Medoxomil and 99.45% for Metoprolol Tartrate respectively. LOD, LOQ values obtained from regression equations of Olmesartan Medoxomil and Metoprolol Tartrate were 0.015, 0.13 and 0.046, 0.40 respectively. Regression equation of Olmesartan Medoxomil is $y = 251942x + 110535$, and $y = 9709x + 11274$ of Metoprolol Tartrate. Retention times were decreased and that run time was decreased, so the technique developed was simple and conservative that can be embraced in regular quality control test in industries.

INTRODUCTION

Olmesartan medoxomil is a potent, orally active, selective angiotensin II receptor (type AT₁) antagonist. Used to treat high blood pressure (hypertension). It is used in lowering high blood pressure helps prevent strokes, heart attacks, and kidney problems. *Metoprolol tartrate* is a cardio-selective beta-adrenergic blocking agent. It is used to treat and prevent heart attacks, lower high blood pressure and reduce chest pain (angina). Olmesartan Medoxomil + Metoprolol

Succinate is used in the treatment of Hypertension (high blood pressure). ⁽¹⁻²⁾

MATERIALS and METHODS:

Preparation of phosphate buffer: Accurately weighed 1.36 gm of potassium dihydrogen ortho phosphate was taken into a 1000ml of volumetric flask, add about 900ml of distilled water. The flask was shaken until the particles get dissolved, made up to the mark with water and then add 1ml of triethylamine. The pH was

adjusted to 3.0 with dilute ortho phosphoric acid solution.

Preparation of Mobile phase: Accurately measured 500ml of (50%) of HPLC acetonitrile and 500ml of phosphate buffer (50%) were mixed and degassed in a digital ultra sonicator for 25 minutes and then filtered through 0.45 microns filter under vacuum filtration.⁽³⁾

Preparation of sample solution: Accurately weighed 10 tablets 10 mg of powder equivalent Olmesartan Medoxomil and 10 mg of Metoprolol Tartrate API standards were accurately weighed and is transferred into a neat and dry volumetric flask of 100ml. About 70ml of diluent was added and allow for sonicate to remove the complete air bubbles formed in it, which is again make up to mark with same diluent. From the stock solution 1.2ml of Olmesartan Medoxomil and 3ml of Metoprolol Tartrate stock solutions was pipetted out and transferred in to 10ml volumetric flask which is again diluted with diluent up to the mark to get 12 μ g/ml Olmesartan Medoxomil and 30 μ g/ml Metoprolol Tartrate.

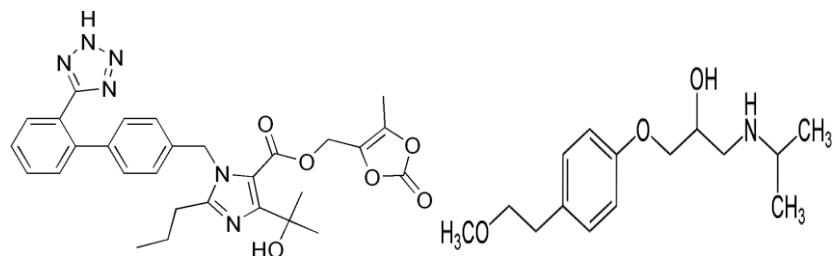
Preparation of Standard solution: 10 mg of Olmesartan Medoxomil and 10 mg of Metoprolol Tartrate API standards were accurately weighed and is transferred into a neat and dry volumetric flask of 100ml. About 70ml of diluent was added and allow for sonicate to remove the complete air bubbles formed in it, which is again make up to mark with same diluent. From the stock solution 1.2ml of Olmesartan Medoxomil and 3ml of Metoprolol Tartrate stock solutions was pipetted out and transferred in to 10ml volumetric flask which is again diluted with diluent up to the mark to get 12 μ g/ml Olmesartan Medoxomil and 30 μ g/ml Metoprolol Tartrate.⁽⁴⁾

Procedure: Samples were injected by changing chromatographic conditions and the chromatograms were recorded.

RESULTS AND DISCUSSION:

Method validation: Specificity, linearity, range, Accuracy, precision,

Repeatability, Intermediate precision, limit of detection, limit of Quantification, Robustness.


SPECIFICITY: The system suitability for specificity was carried out to determine whether there is an interference of any impurities in retention time of analytical peak. The specificity study was performed by injecting blank. It was found that there was no interference of impurities in retention time of analytical peak.⁽⁵⁾

LINEARITY: The regular stock solution consists of six linear concentrations (4 μ g/ml-20 μ g/ml Olmesartan Medoxomil and 10 μ g/ml-50 μ g/ml-Metoprolol tartrate). They were tabulated in table num-1 and 2.

ACCURACY: Accuracy was evaluated by standard addition method of three known concentration of the drug and the spiked solution were analysed. The recovery of the added drug was determined by calculating the pre-analysed drug concentration with concentration of spiked drug. The % recovery was calculated and the result was reported in table no.3 and 4.

PRECISION: The precision of the analytical method was studied by injecting six replicates of standard and sample concentration on the same day and another day. The concentration of Olmesartan Medoxomil and Metoprolol Tartrate were injected at intermediate precision and repeatability. The %RSD was calculated and results were reported at table no. 5, 6, 7 and 8.⁽⁶⁾

LIMIT OF DETECTION (LOD) AND LIMIT OF QUANTIFICATION (LOQ): The limit of detection (LOD) and limit of quantification (LOQ) were determined by injecting six replicates of mobile phase followed by three concentration of the drug. The LOD was defined as the concentration which yields a signal-to-noise ratio 3:1 while the LOQ was calculated to be the lowest concentration that could be measured with signal-to-noise ratio 10:1. The LOD & LOQ were calculated by measuring the standard deviation of the response and slope. The result of LOD & LOQ was tabulated in table no. 9.⁽⁷⁾

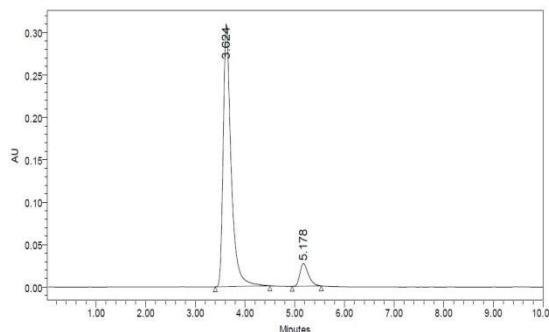


Fig-1: structure of Olmesartan

Fig-2: structure of Metoprolol Tartrate

Fig-3: Chromatogram showing blank


Fig-4: Chromatogram showing optimised condition

Table 1: Linearity results for Olmesartan Medoxomil

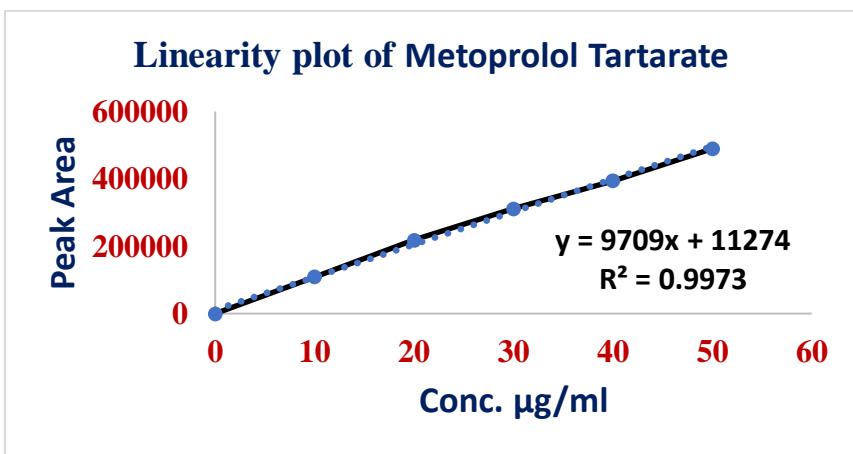

Linearity Level	Concentration ($\mu\text{g/ml}$)	Peak Area
Level 0	0	0
Level 1	4	1181514
Level 2	8	2181557
Level 3	12	3190741
Level 4	16	4161134
Level 5	20	5064755

Table 2: Linearity results for Metoprolol Tartrate

Linearity Level	Concentration ($\mu\text{g/ml}$)	Peak Area
Level 0	0	0
Level 1	10	109398
Level 2	20	218339
Level 3	30	311805
Level 4	40	394694
Level 5	50	489759

Fig-5: showing calibration curve of Olmesartan Medoxomil

Fig-6: showing calibration curve of Metoprolol Tartrate

Table 3 : Accuracy data for Olmesartan Medoxomil

Concentration of sample taken ($\mu\text{g/ml}$)	% of spiked level	Amount added (μg)	Amount found (μg)	% Recovery	Statistical Analysis of % Recovery
10 $\mu\text{g/ml}$	50% Injection 1	6	5.96	99.2	MEAN = 100.33 %RSD = 1.47
	50% Injection 2		5.99	99.8	
	50% Injection 3		6.1	102	
	100% Injection 1	12	11.92	99.2	MEAN = 99.46 %RSD = 0.31
	100% Injection 2		11.94	99.4	
	100% Injection 3		11.98	99.8	
	150% Injection 1	18	17.8	98.7	MEAN = 99.30 %RSD = 0.65
	150% Injection 2		17.9	99.4	
	150% Injection 3		18	100	

Table 4 : Accuracy data for Metoprolol Tartrate

Concentration of sample taken (µg/ml)	% of spiked level	Amount added (µg)	Amount found (µg)	% Recovery	Statistical Analysis of % Recovery
150µg/ml	50% Injection 1	15	14.95	99.6	MEAN = 99.73 %RSD = 0.51
	50% Injection 2		14.91	99.3	
	50% Injection 3		15.06	100.29	
	100% Injection 1	30	29.88	98.5	MEAN = 99.27 %RSD = 0.68
	100% Injection 2		29.91	99.6	
	100% Injection 3		29.95	99.73	
	150% Injection 1	45	44.72	99.27	MEAN = 99.36 %RSD = 0.08
	150% Injection 2		44.79	99.43	
	150% Injection 3		44.77	99.38	

Table-5: Intermediate precision data for Olmesartan Medoxomil

Injection	Retention Time	Area of the peak	Height of the Peak	Peak plate count	Peak tailing
1	3.623	3460837	32985	4761	1.4
2	3.629	3471289	32662	4782	1.5
3	3.629	3488123	32945	4639	1.4
4	3.623	3487128	33312	4614	1.5
5	3.633	3484139	32544	4638	1.4
6	3.635	3482645	33985	4715	1.5
Mean		3479026			
SD		10754			
% RSD		0.31			

Table-6: Intermediate precision data for Metoprolol Tartrate

Injection	Retention Time	Area of the peak	Height of the Peak	Peak plate count	Peak tailing
1	5.175	336517	4261	3519	1.4
2	5.174	336824	4316	3494	1.3
3	5.202	339674	4317	3439	1.4
4	5.174	331423	4298	3425	1.3
5	5.193	338354	4279	3525	1.4
6	5.174	339712	4312	3493	1.3
Mean		337084			
SD		3087			
% RSD		0.92			

Table-7: Repeatability results for Olmesartan Medoxomil

Injection	Retention Time	Area of the peak	Height of the Peak	Peak plate count	Peak tailing
1	3.623	3480636	33168	4874	1.5
2	3.624	3463599	33210	4873	1.5
3	3.629	3498779	33153	4574	1.5
4	3.802	3497870	33421	4567	1.5
5	3.624	3490276	33521	4500	1.5
6	3.822	3496298	34621	4618	1.5
Mean		3487909			
SD		13691			
% RSD		0.39			

Table-8: Repeatability results for Metoprolol Tartrate

Injection	Retention Time	Area of the peak	Height of the Peak	Peak plate count	Peak tailing
1	5.175	323863	4361	3579	1.4
2	5.170	325248	4298	3574	1.4
3	5.174	322052	4317	3339	1.4
4	5.408	328133	4328	3325	1.4
5	5.170	328655	4289	3325	1.4
6	5.407	328712	4302	3463	1.4
Mean		326110			
SD		2814			
% RSD		0.86			

Table-9: LOD and LOQ data for Olmesartan Medoxomil and Metoprolol Tartrate

Drug	Average slope	Average intercept	Standard deviation of the intercept	Regression coefficient (R^2)	LOD ($\mu\text{g/ml}$)	LOQ ($\mu\text{g/ml}$)
Olmesartan medoxomil	251942	110535	1168	0.998	0.015	0.046
Metoprolol Tartrate	9709	11274	398	0.997	0.13	0.40

Table-10: Robustness data for Olmesartan Medoxomil

Flow 0.4 ml	Std Area	Tailing factor	Flow 0.5ml	Std Area	Tailing factor	Flow 0.6 ml	Std Area	Tailing factor
	4051994	1.62		4532189	1.58		4964755	1.58

Table-11: Robustness data for Metoprolol Tartrate

Flow 0.4 ml	Std Area	Tailing factor	Flow 0.5 ml	Std Area	Tailing factor	Flow 0.6 ml	Std Area	Tailing factor
	395859	1.52		432687	1.47		459759	1.47

ROBUSTNESS: The small deliberate changes in method like flow rate was made but there were no recognized change in the result and are within the range as per ICH guide lines. Robustness condition like flow minus (0.4ml/min), flow plus (0.6ml/min),

temperature ambient was maintained and samples were injected in duplicate manner. System suitability parameters were not much affected and all the parameters were passed %RSD was found to be within the limits and results were tabulated in table no.10 and 11.⁽⁸⁾

CONCLUSION:

A simple, fast, accurate and specific RP-HPLC method has been developed for the simultaneous quantification of Olmesartan and Metoprolol in bulk and tablet dosage form by studying different parameters. The maximum absorbance was found to be at 284nm for Olmesartan and 284nm for Metoprolol. The common wavelength observed was 284nm and the peaks purity was excellent. Injection volume was selected to be 20 μ l which gave a good peak area. The column used for study was Symmetry Xterra – C18, BDS column and resulted good peak shape. 30°C temperature was found to be suitable for the nature of drug solution. The flow rate was fixed at 0.5ml/min because of good peak area, satisfactory retention time and good resolution. Different ratios of mobile phase were studied, mobile phase with ratio of 65:35(Acetonitrile:Phosphate buffer) was fixed due to good symmetrical peaks and good resolution. So, this mobile phase was used for the proposed study.

Acknowledgement: The author expresses sincere thanks to Aurobindo pharma, Ltd., Vishakapatnam. For providing facilities and greatest support to carry out the research work.

REFERENCES:

1. <https://www.drugbank.ca/drugs/DB00275>
2. <https://www.drugbank.ca/drugs/DB00264>
3. Singh R. HPLC method development and validation-an overview. *Journal of Pharmaceutical Education & Research.* (2013); 4(1)
4. Sahu PK, Ramisetty NR, Cecchi T, Swain S, Patro CS, Panda J. An overview of experimental designs in HPLC method development and validation. *Journal of pharmaceutical and biomedical analysis.* (2018); 147: 590-611.
5. Bhagyasree, N. Injeti, A. Azhakesan, U.M.V.Rao. A review on analytical method development and validation. *International Journal of Pharmaceutical Research and Analysis.* (2014); 4(8): 444-448
6. Nussberger J, Koike H. Antagonizing the angiotensin II subtype I receptor: A focus on Olmesartan medoxomil. *Clinical Therapeutics.* (2004);26:A12-20.
7. Altria, D.R. Rudd. An overview of method validation and system suitability aspects in capillary electrophoresis. *Chrmatographia.* (1995); 41(5): 325-331
8. Shah NJ, Suhagia BN, Shah RR, Patel NM. Development and validation of a simultaneous HPTLC method for the estimation of Olmesartan medoxomil and hydrochlorothiazide in tablet dosage form. *Indian Journal of Pharmaceutical Sciences.* (2007); 69(6): 834.