

**DEVELOPMENT OF A UV-SPECTROPHOTOMETRIC METHOD FOR
THE SIMULTANEOUS DETERMINATION OF ROSUVASTATIN CALCIUM AND
ASPIRIN IN TABLETS**

S. Ashok Reddy*, Dr .K.B Chandrasekhar

Department of Pharmaceutical Analysis, Safa College of Pharmacy, Kurnool, (A.P), INDIA

Director, Research and Development Cell (R&D), JNTUA, Anantapur, (A.P), INDIA

*Corresponding Author E-mail: reddi 0092002@yahoo.com

ABSTRACT

A specific, rapid and simple UV spectrophotometric method with good sensitivity was developed and validated for the simultaneous quantification of Rosuvastatin calcium and aspirin in standard solutions and tablets. The method employed solving of simultaneous equations based on the measurement of absorbance maxima at 243 and 207 nm, for Rosuvastatin calcium and aspirin, respectively. The calibration curve was linear for both drugs in a concentration range of 3--18(μ g/ml) and 2-12(μ g/ml). It can be concluded from the results that present method for the simultaneous determination of Rosuvastatin calcium and aspirin in tablets is specific, rapid and simple with good sensitivity. This analytical method is also applicable in ordinary laboratories also. It can also be adopted for quality control tests for these drugs in tablets.

Key words: UV Spectrophotometric method, Rosuvastatin calcium, Aspirin, and Simultaneous determination.

INTRODUCTION:

Rosuvastatin calcium is chemically bis [(E)-7 [4-(4-fluorophenyl)-6 isopropyl-2-[methyl(methylsulphonyl)amino] pyrimidin-5-yl] (3R,5S) -3,5-dihydroxyhept-6-enoic acid] Calcium salt.¹⁻² It is alipid lowering

drug. It inhibits the enzyme 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme that converts HMG-CoA to mevalonate; a precursor of cholesterol and thereby checks the synthesis of cholesterol. It is used in the treatment of hypercholesterolemia and

dyslipidemia. The typical dose of rosuvastatin calcium is 5-40 mg per day and it reduces 40-70% LDL level³. A survey of literature showed few UV spectrophotometric⁴⁻⁹, few HPLC¹⁰⁻¹⁴, few HPTLC¹⁵⁻¹⁶ two chromatography stability indicating method¹⁷, few LC-MS method¹⁸⁻²⁰ and few solid phase extraction using tandem mass spectroscopy methods²¹ are available for the estimation of rosuvastatin in pharmaceutical preparation and in biological fluids.

Aspirin is also known as acetylsalicylic acid is a salicylate drug, often used as an analgesic, antipyretic, anti-inflammatory and has an anti-platelet effect by inhibiting the production of thromboxane, which under normal circumstances binds platelet molecule together to create a patch over damage of the walls within blood vessels. Chemically it is 2-acetoxybenzoic acid and is a non-steroidal anti-inflammatory drug (NSAIDs) and shows inhibition of the enzyme cyclooxygenase and it is official in Indian Pharmacopoeia, The United States Pharmacopoeia and British Pharmacopoeia²²⁻²⁵

EXPERIMENTAL

2.1 Instruments and reagents

A Shimadzu UV - 1800 UV/VIS spectrophotometer was used with 1 cm matched quartz cell. All the chemicals used were of analytical grade. Methanol A.R. grade were procured from Loba Chem.Ltd., Mumbai. An analytically pure sample of Rosuvastatin calcium and aspirin were procured as gift sample from Chandralabs Hyderabad. Tablet formulation was procured from a local pharmacy.

2.2 Preparation of standard stock solution

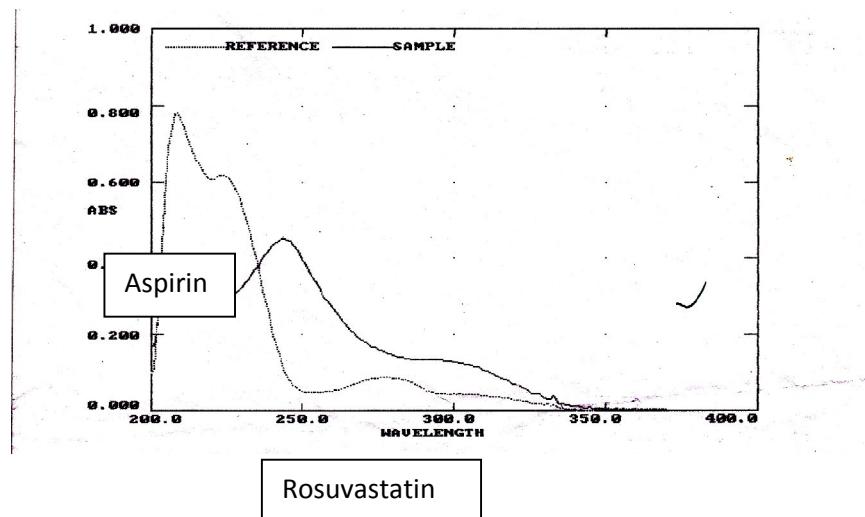
S. Ashok Reddy et al/JGTPS/Volume 3, Issue 4, October-December 2012

Stock solutions of both the drugs were prepared by dissolving accurately weighed 100 mg of each standard drug in 100 ml methanol. Both stock solution (100 µg/ml) were further diluted to produce solutions of 10 µg/ml Rosuvastatin calcium, 15 µg/ml aspirin and scanned in the entire UV range (200 - 400 nm) to determine the absorbance maxima. Absorbance maxima of Rosuvastatin calcium and aspirin were detected at 243 nm (λ_2) and 207 nm (λ_1), respectively. Both the spectra were overlaid. The calibration curve was linear for both drugs in a concentration range of 3-18(µg/ml) and 2-12(µg/ml).

2.3 Analysis of marketed formulations

Twenty tablets of formulation were accurately weighed and powdered. An amount of powder equivalent to 10 mg and 15mg of Rosuvastatin calcium and aspirin were weighed and dissolved in 100 ml of methanol. It was filtered through Whatman filter paper No. 41 after subjecting 30 minutes for sonicating and then final dilution was made with methanol to get final concentration.

2.4 Simultaneous equations method


The developed method was based on simultaneous equations method. Absorbance maxima of Rosuvastatin calcium and aspirin were 243nm (λ_2) and 207 nm (λ_1), respectively. The absorptivity coefficients of the two drugs were determined by using Beer's law. The overlaid spectra of Rosuvastatin calcium and aspirin are represented in [Figure - 1]. A set of two simultaneous equations was developed using these absorptive coefficients.

$$C_x = A_1 a y_2 - A_2 a y_1 / a x_1 a y_2 - a x_2 a y_1$$

$$C_y = A_1 a x_2 - A_2 a x_1 / a y_1 a x_2 - a y_2 a x_1$$

A1 and A2 are absorbances of mixture at 207 nm and 243 nm respectively, ax1 and ax2 are absorptivities of Aspirin at λ 1 and λ

FIGURE-1:

Table No. 1: Calibration parameters

S.No.	Parameter	Rosuvastatin	Aspirin
1	Absorption Maxim(nm)	244(nm)	207(nm)
2	Beer's Law limits(mg/ml)	3--18(μ g/ml)	2-12(μ g/ml)
3	Regression equation (y)* Slope (b) Intercept (a)	0.045 0.004	0.036 0.176
4	Correlation coefficient	0.999	0.998
5	Limit of detection	0.0859	0.2319
6	Limit of quantification	0.2682	0.7239

* $y = a \pm bx$; where x is the concentration in mg/ml and y is absorbance.

Table No 2: Results of Recovery study

Rosuvastatin	Absorbance	Recovery	Recovery%
80	8+1=9	0.396	8.82
100	10+1=10	0.492	10.96
120	12+1=13	0.59	13.14

Aspirin	Absorbance	Recovery	Recovery%
80	12+1=13	0.654	13.55
100	15+1=16	0.779	16.14
120	18+1=19	0.858	17.77

Table No 3: Assay results of Aspirin and Rosuvastatin Calcium in tablet.

ASSAY	Absorbance	Concentration	Labeled (mg)	%Drug
ASPIRIN	0.724	15mcg	75mg	100%
ROSUVASTATIN	0.093	2mcg	2mg	99%

* is average of six determinations.

RESULT AND DISCUSSION

The method was validated according to International Conference on Harmonization guidelines. Linear regression equations (intercepts and slopes) for mixtures of Rosuvastatin calcium and aspirin were established. The high values of the correlation coefficients and the values of Y-intercepts close to zero indicate the good linearity of the calibrations. The values of slope, intercept and correlation coefficient values are given in Table 1. Limit of detection and

Limit of quantitation were determined by using the formula based on the standard deviation of response and the slope. The limit of detection and limit of quantification were calculated by using the equation $LOD = 3.3 \times \sigma / S$ and $LOQ = 10 \times \sigma / S$, where σ is the standard deviation of intercept, S is the slope and it is mentioned in Table 1. To study the accuracy of the developed method, and to check the interference of excipients used in the dosageforms, recovery studies were carried

out by the standard addition method and results are shown in Table 2. Assay results of Aspirin and Rosuvastatin Calcium in tablet are shown in Table 3

CONCLUSION

The developed method was found to be simple, sensitive, accurate and reproducible and can be used for routine quality control analysis of Rosuvastatin calcium and aspirin in bulk and in pharmaceutical formulations.

ACKNOWLEDGEMENT

We would like thank to Chandra labs Hyderabad for providing reference sample of Rosuvastatin calcium and aspirin respectively to facilitate this work and also like to thank Dr.K.B. Chandrasekhar, Director of Evaluation JNTU Ananthapur for giving valuable suggestions during the experiment.

REFERENCES

1. Remington, The science & practice of pharmacy", Wolters Kluwer Health Pvt.Ltd. 21st Edition, 2005, volume 2, 1369
2. Indian pharmacopoeia, The Indian Pharmacopoeia, 2010 ,volume 3, 2071
3. Goodman & Gillman's, The Pharmacological Basis of Therapeutics, 11th Edition, 2006, 933-966.
4. Krishna M.V.,Sankar D.G.,Extractivespectrophotometric method for the determination of rosuvastatin calcium in pureform and in pharmaceutical formulation by using safranin o and methylene blue,E-Journalof Chemistry,2007,4(1),46-49
5. Gupta.,Simple UVspectrophotometric determination ofrosuvastatin calcium in pure form and inpharmaceutical formulations, Journal ofChemistry,2009,6(1),89-92.
6. Gajjar A.K., Shah V.D., Simultaneous UVspectrophotometric estimation of rosuvastatinand ezetimibe in their combined dosage forms,International Journal of Pharmacy andPharmaceutical Sciences, 2010, 2(1), 107-110.
7. Prajapati P.B,Development and validation of extractive spectrophotometricmethod for determination of rosuvastatin calcium in pharmaceutical dosage form, Journal of PharmacyResearch,2010,3(8),2036-2038.
8. Doshi N.,Sheth A.,Patel T.,Dave J.B.,PatelC.N.,Spectrophotometric absorption factor method development and validation forestimation of rosuvastatin calcium and telmisartan in solid dosageform,J.Chem.Pharm.Res.,2010,2(3),89-95.
9. Gajjar A.K., Shah V.D., Simultaneousestimation of rosuvastatin and ezetimibe by ratio spectra derivative Spectrophotometrymethod in their fixed combined dosage forms, International Journal of PharmTech Research,2010, 2(1), 404-410.
10. Sultanal N.,Arayne S.,ShahzadW.,Simultaneous determination of ceftriaxonesodium and statin drugs in pharmaceuticalformulations and human serum by RPPLC,J.Chil.Chem.Soc.,2010,5,5 5-59.
11. Kumar T.R.,Shitut N.R.,Kumar P.K.,VinuM.C.,Kumar V.V.,Mullangi R.,Srinivas N.R.,Determination of rosuvastatin in ratplasma by HPLC:Validation and itsapplication to pharmacokinetic studies,Biomed Chromatography,2006,20(9),881.
12. Doshi N., Sheth A., Sharma A., Dave J.B. ,Patel C.N., Validated RP-HPLC method for simultaneous estimation of RosuvastatinCalcium and Telmisartan in pharmaceutical dosage form, J. Chem. Pharm. Res., 2010,2(2): 252-263.
13. Sultana N.,Arayne M.,Naveed S.,Simultaneoudetermination of captopril and statins in

API, Pharmaceutical formulation and in humanserum by RP-HPLC, Journal of the Chinese Chemical Society, 2010, 57, 378-383.

14. Gomes F.P., Garc P., Development and validation of stability indicating HPLC method for quantitative determination of pravastatin, fluvastatin, atorvastatin and rosuvastatin in pharmaceuticals, Informaword, 2009, 42(12), 1784-1804.
15. Sharma M.C., Sharma S., Kohli D.V., Sharma A.D., A validated HPTLC method for determination of simultaneous estimation of rosuvastatin calcium and ezetimibe in pharmaceutical solid dosages form, Archives of Applied Science Research, 2010, 2 (1) 1-7.
16. Sane R.T., Kamat S.S., Menon S.N., Inamdar S.R., and Mander R. M., Determination of rosuvastatin calcium in its bulk drug and pharmaceutical preparations by High- Performance Thin-Layer Chromatography, Journal of Planar Chromatography, 2005, 18, 194
17. Raj H.A., Rajput S.J., Dave1 J.B. , Patel C.N., Development and validation of two Chromatographic stability-indicating methods for Determination of rosuvastatin In pure form and pharmaceutical preparation, International Journal of ChemTech Research, 2009 1(3) , 677-689.
18. Sharma S., Sharma M.C., Kohli D.V., Chaturvedi S.C., Micellar liquid Chromatographic method development for determination of rosuvastatin calcium and ezetimibe in pharmaceutical combination dosage form, Der Pharma Chemica, 2010, 2(1), 371-377.
19. Mehta T.N., Patel A.K., Kulkarni G.M., Suubbaiah G., Determination of rosuvastatin in the presence of its degradation products by a Stability-Indicating LC Method, AOAC International, 2005, 88(4), 1142-1147.
20. Trivedi R.K., Kallem R.R., Mullangi R., Srinivas N.R., Simultaneous determination of rosuvastatin and fenofibric acid in human plasma by LC-MS/MS with electro spray ionization: Assay development, validation and application to a clinical study, Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 661-669.
21. Xuehua K.L., Yunxia L., Wang L., Zhou J., Jiang Q., Quantitative determination of rosuvastatin in human plasma by ion pair liquid-liquid extraction using liquid chromatography with electro spray ionization tandem mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis, 2007, 44, 540-546.
22. Indian Pharmacopoeia, 2010; volume- 1: pg no- 847.
23. The United States Pharmacopeia 29, The National Formulary 24, The Official Compendia of Standards, Asian Edition, 2006, pg no-196, 200.
24. British Pharmacopoeia, volume-2, London: The stationary office, 2004, Pg no-176, 1927.
25. The Merck Index – An Encyclopedia of chemicals, Drugs, and biological, 13th edition, Merck Research Laboratories, Whitehouse station. New Jersey: 2001; pg no.856, 9506.