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ABSTRACT

                      The treatment of HIV is of prime importance in the developing countries as the 
threaten of death due to AIDS has been increasing tremendously but with the recent innovations 
in the field and development of certain chemotherapeutic agents it can be treated and one can 
increase the life of patient with the help of retroviral therapy. The present review is an attempt 
made to reveal the importance of integrase inhibitors in the treatment of HIV and recent 
advances along current status of HIV 1 integrase inhibitors. Highly active antiretroviral therapy 
(HAART) significantly decreases plasma viral load, increases CD4+ T-cell counts in HIV-1-
infected patients and has reduced progression to AIDS in developed countries. However, adverse 
side effects, and emergence of drug resistance, mean there is still a demand for new anti-HIV 
agents. The HIV integrase (IN) is a target that has been the focus of rational drug design over the 
past decade. In 2007, Raltegravir was the first IN inhibitor approved by the US Food and Drug 
Administration for antiretroviral combination therapy, while another IN inhibitor, Elvitegravir, is 
currently in Phase III clinical trials. This article reviews the development and resistance profiling 
of small molecule HIV-1 IN inhibitors.
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INTRODUCTION:
Integrase inhibitor:
        Integrase inhibitors are a class of 
antiretroviral drug designed to block the 
action of integrase, a viral enzyme that 
inserts the viral genome into the DNA of the 

host cell. Since integration is a vital step in 
retroviral replication, blocking it can halt 
further spread of the virus. Integrase 
inhibitors were initially developed for the 
treatment of HIV infection, but they could 
be applied to other retroviruses. The first 
integrase inhibitor approved by the U.S. 
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Food and Drug Administration (FDA) was 
raltegravir (brand name Isentress), approved 
on October 12, 2007. Research results 
published in the New England Journal of 
Medicine on July 24, 2008, concluded that 
"raltegravir plus optimized background 
therapy provided better viral suppression 
than optimized background therapy alone 
for at least 48 weeks." Since integrase 
inhibitors target a distinct step in the 
retroviral life cycle, they may be taken in 
combination with other types of HIV drugs 
to minimize adaptation by the virus. They 
are also useful in salvage therapy for 
patients whose virus has mutated and 
acquired resistance to other drugs. [1]
Acquired immunodeficiency syndrome 
(AIDS), caused by infection from the human 
immunodeficiency virus type 1 (HIV-1), 
remains a serious global health problem.
After years of hard work, a number of 
inhibitors of reverse transcriptase (RT) and 
protease (PR) were discovered and 
introduced in clinical practice. 
Unfortunately, all the mono therapies using 
either RT or PR inhibitors have failed owing 
to the rapid emergence of HIV-resistant 
strains, and the long-term goal of eradicating 
the virus from infected cells is still 
unattained. However, the use of 
combinations of both RT and PR inhibitors 
has resulted in significant increases in 
disease-free survival. This multiple attack is 
more effective, blocking two different steps 
of the virus replication cycle and causing a 
delay in the emergence of resistant strains. 
Therefore, it is evident that the development 
of new inhibitors targeted toward other viral 
proteins is of paramount importance. A 
further viral protein as potential target for 
antiretroviral therapy is HIV-1 integrase 
(IN). Recently, anti-IN agents in 
combination with RT and PR inhibitors have 
been found to be synergistic in vitro assays 

and a combination therapy that uses 
inhibitors of all three enzymes at the same 
time could result in a real breakthrough in 
the HIV-1 therapy. Unfortunately, no 
inhibitor of HIV-1 IN is currently used in 
clinical practice, and this fact led us to make 
greater efforts in research in this field. The 
full-length HIV-1 IN (288 amino acids) has 
three domains: the catalytic core, the C-
terminal and the N-terminal domains. It is 
thought that the catalytic core contains the 
active site responsible for catalysis of all the 
reactions of integration. Three amino acids 
(Asp64, Asp116, and Glu152) in the 
catalytic core domain are highly conserved 
among retrotransposon and retroviral INs. 
Mutation of these residues generally leads to 
a loss of all the catalytic activities of these 
proteins, and they are therefore thought to be 
essential components of the IN active site. 
The catalytic core domain socked with 5-
chloroindolyltetrazolylpropenone (5CITEP) 
(a potent inhibitor of IN reported by 
Shionogi Company) was resolved by D. 
Davies. The crystal structure shows a 
dimeric model in which two monomers 
interact with each other, but actually it is not 
clear whether IN works in vivo as a 
monomer, a dimer, or a tetramer. Multiple 
steps in the integration process are catalyzed 
by HIV-1 IN, as shown schematically in Fig. 
1. The integration of HIV-1 DNA into the 
host chromosome is achieved by the IN 
performing a series of DNA cutting and 
joining reactions (A–C). The first step in the 
integration process is 3′ processing, in which 
the enzyme removes two nucleotides from 
each 3′ end of the proviral DNA, leaving 
recessed CA OHs at the 3′ ends. Moreover, 
IN cuts the human DNA at the site of 
integration 5 bases apart (Fig. 1A).



                Deepak S. Musmade et al/JGTPS/Volume 3, Issue4, October-December 2012

                                                                                                                                                  858

In a second step, termed “strand transfer”, 
the IN protein joins the previously processed 
3′ ends to the 5′ ends of strands of target 
DNA at the site of integration (Fig. 1B). 

Finally, in the 5′ end, the joining IN fills in 
the gaps and ligates the unjoined strands 
(Fig. 1C). (1)

                
Fig. no. 1 Schematic steps for HIV-1 integration

HISTORY:
                 
             In the 1980s an infectious disease 
started to plague human civilization. The 
coexistence of viruses and humans is a fight 
for survival for both because the invaders 
can kill the human but in doing so eliminate 
their own host. The body uses its immune 
system to protect it from bacteria, viruses 
and other disease-causing beings, and when 
it fails to do so immunodeficiency diseases 
occur. One such disease is acquired 
immunodeficiency syndrome (AIDS) which 
is most commonly a result of an infection by 
the human immunodeficiency virus (HIV). 
[2] Two closely related types of HIV have 
been identified, HIV-1 and HIV-2. While 
HIV-2 is spreading in India and West 
Africa, HIV-1 is more virulent and the 
number one cause of AIDS worldwide. 
Though some of the patients have different 
results in most cases people infected with 
HIV go on to develop AIDS and ultimately 
die of opportunistic infections or cancer. 
Integration to the retroviral genome is 
critical for gene expression and viral 
replication. The viral genome is reversely 

transcribed into the DNA of the infected cell 
by viral reverse transcriptase; the DNA is 
then integrated into the host-cell 
chromosomes with the aid of the viral 
integrase. RNA transcripts are produced 
from integrated viral DNA and serve both as 
mRNAs to direct the synthesis of viral 
proteins and later as RNA genomes of the 
new viral particles. Viral particles escape 
from the cell by budding from the plasma 
membrane, each enclosed in a membrane 
envelope. In this process HIV-1 integrase is 
essential and therefore a very promising 
target for anti-AIDS drug design. [3] 
Selective drug design is a possibility as 
HIV-1 integrase has no known cellular 
equivalent. Many integrase inhibitors have 
been discovered and designed but only a few 
of the molecules were developed further and 
got as far as phase II or phase III of clinical 
trials. Raltegravir (brand name Isentress®) 
was granted accelerated approval from FDA 
in October 2007 and from EMEA (now 
EMA) in December 2007.[4, 5] It was 
marketed as an antiretroviral drug (ARV) for 
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HIV-1 infected adults who had already been 
exposed to a minimum of three ARV classes 
and showed multi-drug resistance. In general 
there are two main groups of integrase 
inhibitors; Integrase Strand Transfer 
inhibitors (INSTI) and Integrase Binding 
Inhibitors (INBI). INSTIs restrain the 
binding of pre-integration complex (PIC) 
and host DNA and INBIs restrain integrase 
and viral DNA binding. Raltegravir is an 
INSTI integrase inhibitor which inhibits 
both HIV-1 and HIV-2 replication. It is 
more potent than other previously known 
integrase inhibitors as well as causing fewer

side effects. Raltegravir is currently the only 
HIV-1 integrase inhibitor being used to treat 
HIV infections but other drugs are in clinical 
trials, e.g. Elvitegravir and S/GSK1349572. 
The HIV-1 integrase enzyme
The HIV-1 integrase (IN) is a key enzyme in 
the replication mechanism of retroviruses. It 
is responsible the for transfer of virally 
encoded DNA into the host chromosome 
which is a necessary event in retroviral 
replication. Since IN has no equivalent in 
the host cell, integrase inhibitors have a high 
therapeutic index as they do not interfere 
with normal cellular processes

. 

Fig. no. 2: Structural domains of the HIV-1 integrase
IN belongs, both mechanistically and 
structurally, to the super family of 
polynucleotidyl transferases 10 and is 
composed of 288 amino acids that form the 
32 kDa protein. Retroviruses encode their 
enzymes (protease, reverse transcriptase and 
integrase) with the POL gene with the 3´end 
encoding for IN. [6]
IN is composed of 3 structurally 
independent, functional domains 
1. The N-terminal domain (NTD) 
encompasses amino acids 1-50 and contains 
two histidine residues (His12 and His16) 
and two cysteine residues (Cys40 and 
Cys43), all of which are absolutely 
conserved and form a HHCC zinc-finger 
motif. Single mutations of any of these four 
residues reduce IN enzymatic activity. The 
HHCC zinc-finger motif chelates one zinc 

atom per IN monomer. The NTD is required 
for higher order multimer formation which 
appears to be its primary role. The 
multimerization requires zinc atom that 
stabilizes the fold. 
2. The catalytic core domain (CCD), which 
encompasses amino acids 51- 212, contains 
the active site of IN but it can´t catalyze 
integration in the absence of NTD and CTD 
(the C-terminal domain). CCD contains 
three absolutely conserved negatively 
charged amino acids; D64, D116 and E152. 
These amino acids form the DDE motif that 
coordinates divalent metal ions (Mg2+ or 
Mn2+). 
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             These metal ions are essential for 
the catalysis of integration. CCD has a 
mixed β and α structure with five β-sheets 
and six α helices that are linked by flexible 
loops. 

      The flexible loops allow conformational 
changes that are required for 3´processing of 
the viral DNA and strand transfer (STF) 
reactions which are two key steps of the 
integration reaction. CCD is essential for 
these steps and substitution of any of the 
residues in the DDE motif dramatically 
inhibits the activity of IN. 
3. The C-terminal domain (CTD), which 
encompasses amino acids 213-288, binds 
DNA nonspecifically and its interaction with 
NTD and CCD is required for IN 3´-
processing and strand-transfer activities. 
CTD is the least conserved of the three 
domains. IN acts as a multimer and 
dimerization is required for the 3´-
processing step, with tetrameric IN 
catalyzing the strand-transfer reaction. [6]
Function of HIV-1 integrase:

HIV-1 integration occurs through a 
multistep process that includes two 

catalytic reactions:
3´endonucleolytic processing of proviral 
DNA ends (termed 3´processing) and 
integration of 3´-processed viral DNA into 
cellular DNA (referred to as strand 
transfer).[7] In 3´processing IN binds to a 

short sequence located at either end of the 
long terminal repeat (LTR) of the viral DNA 
and catalyzes endonucleotide cleavage. This 
results in elimination of a dinucleotide from 
each of the 3´ends of the LTR. Cleaved 
DNA is then used as a substrate for 
integration or strand transfer. 
         Strand transfer is a trans-esterification 
reaction involving a direct nuleophilic attack 
of the 3´hydroxy group of the two newly 
processed viral 3´-DNA ends on the 
phosphodiester backbone of the host target 
DNA. This leads to covalent insertion of 
viral DNA into the genome of the infected 
cell. Strand transfer occurs simultaneously at 
both ends of the viral DNA molecule, with 
an offset of precisely five base pairs 
between the two opposite points of insertion.

          The integration reaction is completed 
by removal of unpaired dinucleotides from 
the 5'- ends of the viral DNA, repair of the 
single-stranded gaps created between the 
viral and target DNA molecules and ligation 
of 3'-ends to 5'-ends of the host DNA. 
Divalent metals, Mg2+ or Mn2+, are 
required for 3'-processing and strand transfer 
steps as well as for assembly of IN onto 
specific viral donor DNA to form a complex 
that is competent to carry out either 
function. Because Mg2+ abundance over 
Mn 2+ is 1,000,000-fold in cells it's a more 
reasonable cofactor for integration.
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Mechanism of action:

Fig. no. 03: Integration of viral RNA into host cell DNA
        There are several ways to target 
integrase but strand transfer inhibition is the 
most common one. Other targets include, for 
example, the protein domains beyond the 
active site of IN. The domains interact with 
viral or host DNA and are important for 
binding to the enzyme. It is possible to 
hamper functions of the enzyme by 
disrupting or removing these bindings. PIC 
is a multimeric protein structure inside the 
host cell, composed of both viral and host 
proteins. Integrase is a part of PIC‘s viral 
component. PIC‘s viral and host proteins are 
believed to modulate intrinsic activity of the 
enzyme, shuttle PIC to the nucleus and 
direct integration of viral DNA into a 
transcriptionally active region of the host 
genome. If it were possible to exclude 
certain proteins from the PIC it would block 
the ability of the virus to integrate into the 
host genome. The process where the 

retroviral RNA is transcribed to DNA and 
then integrated into the host cell's genome is 
shown in figure 3.
IN strand transfer inhibitors (INSTIs)
Mg2+ and Mn2+ are critical cofactors in the 
integrase phase and if they are chelated it 
can cause functional impairment of IN. This 
gives the opportunity to design and develop 
highly efficient IN inhibitors (INIs). In fact, 
all small molecule HIV-1 INIs that are now 
being researched contain a structural motif 
that coordinates the two divalent magnesium 
ions in the enzyme’s active site. Raltegravir 
and elvitegravir share the same mechanism 
of action against integrase which is to bind 
to the active site of Mg2+ ions. Inhibitors 
compete directly with viral DNA for binding 
to integrase in order to inhibit 3‘-end 
processing.In doing this the inhibitors 
completely block the active site from 
binding to target DNA. 
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      This way of inhibitions is called strand 
transfer inhibition.
Inhibition of the LEDGF/p75- integrase 
interaction
Lens epithelial derived growth factor is a 
host protein that binds to integrase and is 
crucial for viral replication. The mechanism 
of action is not precisely known but 
evidence suggest that LEDGF/p75 guides 
integrase to insert viral DNA into 
transcriptionally active sites of the host 
genome. Inhibitors of this protein are 
already being developed and patented. They 
are likely to be highly target specific and 
less prone to the development of resistance.

IN binding inhibitors
Another class of INIs could be IN binding 
inhibitors (INBIs) such as V-165. V-165 is a 
compound shown to inhibit integration but 
without obvious effect on viral DNA 
synthesis. When the mechanism of action 
was studied it showed that V-165 interferes 
with viral DNA-IN complex formation. Due 
to its interfering action it is classified as an 
IN binding inhibitor. Other compounds, 
such as styrylquinolines share similar 

mechanism by competing with the LTR 
substrate for IN binding (3)
Drug design
Binding
INSTIs bind tightly and specifically to the 
IN that is associated with the ends of the 
DNA by chelating the divalent metal ions 
(Mg2+) which is coordinated by the 
catalytic triad i.e. the DDE motif. The DDE 
motif is located in the CCD of IN and is the 
active site of the enzyme and hence INSTIs 
are so called active site inhibitors. INSTIs 
bind to a specific site close to the DDE 
motif of IN, a site that is present only in the 
conformation that occurs after processing of 
the 3´ viral DNA ends. Viral DNA may well 
form a part of the inhibitor binding site. The 
binding is a form of allosteric inhibition as it 
implies blockage of a specific integrase-viral 
DNA complex. This results in selective 
inhibition of the strand-transfer reaction, 
with no significant effect on the 3´-
processing reaction. INSTIs may therefore 
be more specific and bind selectively to the 
target DNA binding site and hence be less 
toxic than bi functional inhibitors that are 
able to bind to both the donor and target 
binding sites. [8]

Fig. no.4: Structure activity relationship of elvitegravir and raltegravir. A benzyl group in 
a hydrophobic pocket and a triad to chelate the two Mg2+ ions.
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Two structural components are necessary 
for integrase binding:

      A hydrophobic benzyl moiety that 
buries into a highly hydrophobic pocket near 
the active site; and chelating triad that binds 
with two Mg2+ ions in a rather hydrophilic 
region, anchoring the inhibitor onto the 
protein surface. In fact, all potent integrase 
inhibitors possess a substituted benzyl 

component that is critical for maintaining 
3‘end joining potency. Removal of the 
benzyl group prevents inhibitory function. 
Lipophylic substituents are therefore 
beneficial for the strand transfer inhibition, 
in particular the thiophenyl, furanyl and 
(thiophen-2-yl)phenyl substitutions. 
Heteroaromatic amine and amide also cause 
increase in 3‘ processing inhibitory action
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Fig. no. 5: Examples of integrase inhibitors.
        When catechol-based inhibitors of IN 
were researched it was observed that 
maintaining a planar relationship with the 
bis-hydroxylated aryl ring increases 
potency. The inhibitory activity could be 
further optimized by including a meta-
chloro substituent, enhancing the interaction 

of the benzyl group with the adjacent 
hydrophobic pocket. A benzyl substituted
hydroxyl group improves metal-chelating 
capability while a methoxy group (I) is 
much less potent due to steric clash by the 
additional methyl group with the catalytic 
metals. When researching diketo derivates, 
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the central pyrrole ring of structure K in fig. 
5 was replaced by a series of aromatic 
systems having various substitution patterns. 
That provided optimum relative orientation 
of the benzyl and diketoacid (DKA) site 
chain. Structure L in fig. 5 resulted in 100 
fold increase in potency. Synthesized INIs 
with a quinoline subunit and an ancillary 
aromatic ring linked by functionalized 
spacers such as amide, hydrazide, urea and 
hydroxyprop-1-en-3-one moiety. They 

found that the amide group containing 
dervates were the most promising ones.By 
synthesizing series of styrylquinones 
researchers found out that a carboxyl group 
at C-7, a hydroxylgroup at C-8 in the 
quinoline subunit and an ancillary phenyl 
ring (Figure 5: Structure M) are required for 
inhibition, although alterations of the ring 
are tolerated. Two hydroxyl groups on the 
ancillary phenyl ring are also required for 
inhibitory potency.

Pharmacophore:

Fig. No. 6: Binding of DKAs to DDE amino acids residues of integrase
Since critical structure information is scarce 
on HIV integrase catalysis it is difficult to 
find the exact pharmacophore for its 
inhibition. By studying the SAR and 
pharmacophore of a dual inhibitor scaffold, 
focusing both on integrase and reverse 
transcriptase (RT) it would be possible to 
observe anti-integrase activity. [8] By 
studying the SAR of HIV integrase 
inhibitors it was possible to find that for 
optimal integrase inhibition the 
pharmacophore requires a regiospecific (N-
1) DKA of a specific length. DKA
functionality or its heterocyclicbioisostere 
that selectively inhibit strand transfer seem 
to be present in all major chemotypes of 
integrase inhibitors. As detailed in the SAR 
discussion above the two necessary 
structural components of INI are a benzyl 
hydrophobic moiety and a chelating triad to 
bind the Mg2+ ions. For the triad to bind the 
Mg2+ ions has to be ionized and thus a 
Pharmacophore bioisostere has to be ionized 
too and the benzyl Pharmacophore
bioisostere must to be very hydrophobic.
However, despite previous success in 

clinical development (raltegravir), a detailed 
binding model is lacking so it has proven 
difficult to structure base the design of 
integrase inhibitors. When the 
Pharmacophore of salicylic acid and 
catechol were merged, new chemical 
scaffolds were created. The adjacent 
hydroxyl and carboxylic groups on salicylic 
acid could bind with the metal ions and 
serve as their pharmacophore. 
Polyhydroxylated aromatic inhibitors are 
mostly active against strand transfer 
reactions and 3‘-processing which suggests 
a mechanism that targets both steps. This is 
a very important part of the compound as it 
can be used to bind to the divalent metal on 
the active site of IN and as such be effective 
against viral strains that are resistant to 
strand transfer specific inhibitors.
Resistance
          It has been discovered that over 60 
variations of INSTI mutations cause in vivo 
and in vitro resistance. Due to these 
mutations and development of resistance the 
inhibitors are less effective against the virus. 
Resistance of INI corresponds to those of 
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other ARV drugs. First IN resistance is 
caused by primary mutations that decrease 
INI sensitivity in combination with 
secondary mutations that further reduce 
virus sensitivity and/or repair decreased 
fitness of the virus. Secondly there is a 
genetic barrier to INI resistance, defined by 
the number of mutations required for the 
loss of clinical INI activity. Thirdly there is 
extensive but incomplete cross-resistance 
among the INIs. A loop containing amino 
acid residues 140-149 is located in the 
catalytic-core domain and is important for 
IN function as mentioned before. This loop 
is flexible and even though its role is not 
quite known it is thought to be important 
and its functions critical for DNA binding. 
This resistance appears within mutations in 
this IN-coding region. The resistance to 
raltegravir and elvitegravir is primarily due 
to the same two mutation pathways but other 
primary mutations are also involved for each 

of the drugs. Some mutations increase 
resistance to the drugs to a large extent than 
others. For example one of the most 
common mutation pathway increases the 
resistance to raltegravir up to 100 times 
more than the second most common one. 
Resistance to Integrase Inhibitor 
S/GSK1349572 is still being developed and 
the resistance has not been fully 
characterized. When it was assessed 
alongside the primary mutations of 
raltegravir and elvitegravir it did not show 
cross-resistance which means that it could 
be useful against drug resistant viruses. 
Raltegravir has limited intestinal absorption 
and thus resistance cannot be overcome by 
prescribing higher doses. Newer drugs are 
warranted to overcome this pharmacological 
disadvantage and gain plasma 
concentrations high enough to target 
raltegravir-resistant viruses. [9]

Current status

Fig. no.7: Structure of MK-2048 with important Pharmacophore highlighted
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                The search for new ways to 
improve treatment of patients infected with 
HIV is constant. Considering the experience 
that has been gathered since the 1980s of 
ARV drug development arrival of INSTIs as 
a new potent class of ARV signals a new era 
in the treatment of HIV. Development of a 
successful INSTI treatment was 
accomplished when raltegravir was 
discovered by Merck Sharp & Dohme 
Limited.
         A conditional marketing authorization 
was licensed in December 2007 by the 
European Commission which was valid 
throughout the European Union. In 2009 this 
authorization was converted to a full 
marketing authorization and in the same 
year the FDA changed the approval from 
accelerated to traditional approval and listed 
the drug as a first line ARV treatment agent.
The second INSTI drug, elvitegravir, was 
identified by Japan Tobacco and clinical 
trials began in 2005. In 2011 the drug was 
still in phase three clinical trials, where it is 
being compared to raltegravir, in treatment 
experienced subjects and is also in phase 

two development in naïve subjects as a part 
of a multidrug treatment. S/GSK1349572 is 
a integrase inhibitor discovered by ViiV
/Shinongi which was entering phase three in 
clinical trials in 2011. This new drug is 
promising and seems to be well tolerated 
and so far shows better results than both 
Raltegravir and Elvitegravir. Since there 
have been problems with resistance to 
Raltegravir and Elvitegravir, scientists have 
started to work on new second generation 
integrase inhibitors, such as MK-2048 which 
in 2009 was developed by Merck. It's a 
prototype second generation INSTI that 
remains potent against viruses containing 
mutations against Raltegravir and 
Elvitegravir. The mechanism of action and 
SAR of MK-2048 is the same as of the other 
INSTIs, the structure of MK-2048 shown in 
figure 6 with essential Pharmacophore
highlighted. Even though drugs discussed 
above are promising the development has a 
long way to go and many things are still 
unknown about the efficacy, safety and 
mechanism of action of these drugs.

1. Raltegravir

Fig. no. 8: Structure of Raltegravir

                       Raltegravir is N-(2-(4-(4-
fluorobenzylcarbamoyl)-5-hydroxy-1-
methyl-6-oxo-1,6-dihydropyrimidin-2-
yl)propan-2-yl) Raltegravir (MK-0518, 
brand name Isentress) is an antiretroviral 
drug produced by Merck & Co., used to treat 
HIV infection. It received approval by the 
U.S. Food and Drug Administration (FDA) 

in October 2007, the first of a new class of 
HIV drugs, the integrase inhibitors, to 
receive such approval. In December 2011, it 
received FDA approval for pediatric use in 
patients ages 2-18, taken in pill form orally 
twice a day by prescription with two other 
antiretroviral medications to form the 
cocktail (most anti-HIV drugs regimens for 
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adults and children use these cocktails). 
Raltegravir is available in chewable form 
but- because the two tablet formulations are 
not interchangeable- the chewable pills are 
only approved for use in children two to 11. 
Older adolescents will use the adult 
formulation. [10]
Research
              Raltegravir significantly alters HIV 
viral dynamics and decay and further 
research in this area is ongoing. In clinical 
trials patients taking Raltegravir achieved 
viral loads less than 50 copies per millitre 
sooner than those taking similarly potent 
Non-nucleoside Reverse Transcriptase 
Inhibitors or Protease Inhibitors. This 
statistically significant difference in viral 
load reduction has caused some HIV 
researchers to begin questioning long held 
paradigms about HIV viral dynamics and 
decay. Research into Raltegravir's ability to 

affect latent viral reservoirs and possibly aid 
in the eradication of HIV is currently 
ongoing.[11]
Research results were published in the New 
England Journal of Medicine on July 24, 
2008. The authors concluded that 
"raltegravir plus optimized background 
therapy provided better viral suppression 
than optimized background therapy alone 
for at least 48 weeks."
Research on human cytomegalovirus 
(HCMV) terminase proteins demonstrated 
that Raltegravir may block viral replication 
of the herpesviruses.
Tolerability
              Raltegravir was generally well 
tolerated when used in combination with 
optimized background therapy regimens in 
treatment-experienced patients with HIV-1 
infection in trials of up to 48 weeks' 
duration.

2. Elvitegravir

Fig. no. 9: Structure of Elvitegravir

Elvitegravir is 6-[(3-Chloro-2-fluorophenyl) methyl]-1-[(2S)-1-hydroxy-3-methylbutan-2-yl]-7-
methoxy-4-oxoquinoline-3-carboxylic acid

      Elvitegravir (EVG) is an investigational 
new drug for the treatment of HIV infection. 
It acts as an integrase inhibitor. It is 
undergoing Phase III clinical trial conducted 
by the pharmaceutical company Gilead 
Sciences, which licensed EVG from Japan 
Tobacco in March 2008. According to the 

results of the phase II clinical trial, patients 
taking once-daily elvitegravir boosted by 
Ritonavir had greater reductions in viral load 
after 24 weeks compared to individuals 
randomized to receive a Ritonavir-boosted 
protease inhibitor. [12]
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CONCLUSION
             As the importance of HIV1 
integrase inhibitors remains unresolved in 
the treatment of HIV and AIDS most of the 
times retroviral therapy finds certain 
limitations in the treatment of HIV resistant 
strains. The newer class of HIV 1 integrase 
inhibitors may prove as an effective tool in 
the treatment of HIV and AIDS. In recent 
days the HIV 1 integrase inhibitors getting 
more importance in the treatment of HIV 
and AIDS. 
                 Most of the research work in the 
field of drug design has been directed 
towards the development of newer 
derivatives of Raltegravir and Elvitegravir in 
recent advances some members of this class 
are currently in clinical trials which may 
come in market in future. As a new class of 
drug targeting the third essential enzyme for 
HIV replication (along with reverse 
transcriptase and protease), the integrase
inhibitors are a welcome addition to the 
treatment armamentarium for HIV/AIDS in 
treatment-experienced patients failing 
available antiretroviral regimens. Clinically 
relevant interactions with other available 
antiretroviral agents and long-term adverse 
effects and tolerability will have an impact

on the future clinical value of the integrase 
inhibitors. 
           Definition of the genetic barriers to        
integrase-inhibitor resistance, determinants 
of choice in the divergent pathways to 
resistance, and questions regarding cross
resistance across the class will need to be 
addressed. The integrase inhibitors should 
also be studied further as potential 
components in first-line HAART regimens 
based on available experimental data with
raltegravir in combination with NRTIs. This 
would be particularly true for those in whom 
PI- or NNRTI-based therapy may be less 
than optimal. Finally, further safety, 
pharmacokinetic, and tolerability studies of 
raltegravir in special populations are 
warranted.

       When considered as a whole, the 
promising efficacy and tolerability profile of 
the integrase inhibitors, absence of cross-
resistance with other antiretroviral classes, 
and demonstrated synergism of the integrase
inhibitors in combination with approved
antiretroviral agents place the minimum a 
position to become important components of 
effective combination antiretroviral 
regimens in individuals living with 
HIV/AIDS
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ABSTRACT

                      The treatment of HIV is of prime importance in the developing countries as the threaten of death due to AIDS has been increasing tremendously but with the recent innovations in the field and development of certain chemotherapeutic agents it can be treated and one can increase the life of patient with the help of retroviral therapy. The present review is an attempt made to reveal the importance of integrase inhibitors in the treatment of HIV and recent advances along current status of HIV 1 integrase inhibitors. Highly active antiretroviral therapy (HAART) significantly decreases plasma viral load, increases CD4+ T-cell counts in HIV-1-infected patients and has reduced progression to AIDS in developed countries. However, adverse side effects, and emergence of drug resistance, mean there is still a demand for new anti-HIV agents. The HIV integrase (IN) is a target that has been the focus of rational drug design over the past decade. In 2007, Raltegravir was the first IN inhibitor approved by the US Food and Drug Administration for antiretroviral combination therapy, while another IN inhibitor, Elvitegravir, is currently in Phase III clinical trials. This article reviews the development and resistance profiling of small molecule HIV-1 IN inhibitors. 

Key-words: Antiretroviral, HIV, integrase, inhibitors.

INTRODUCTION:

Integrase inhibitor: 

        Integrase inhibitors are a class of antiretroviral drug designed to block the action of integrase, a viral enzyme that inserts the viral genome into the DNA of the host cell. Since integration is a vital step in retroviral replication, blocking it can halt further spread of the virus. Integrase inhibitors were initially developed for the treatment of HIV infection, but they could be applied to other retroviruses. The first integrase inhibitor approved by the U.S. Food and Drug Administration (FDA) was raltegravir (brand name Isentress), approved on October 12, 2007. Research results published in the New England Journal of Medicine on July 24, 2008, concluded that "raltegravir plus optimized background therapy provided better viral suppression than optimized background therapy alone for at least 48 weeks." Since integrase inhibitors target a distinct step in the retroviral life cycle, they may be taken in combination with other types of HIV drugs to minimize adaptation by the virus. They are also useful in salvage therapy for patients whose virus has mutated and acquired resistance to other drugs. [1]

Acquired immunodeficiency syndrome (AIDS), caused by infection from the human immunodeficiency virus type 1 (HIV-1), remains a serious global health problem. After years of hard work, a number of inhibitors of reverse transcriptase (RT) and protease (PR) were discovered and introduced in clinical practice. Unfortunately, all the mono therapies using either RT or PR inhibitors have failed owing to the rapid emergence of HIV-resistant strains, and the long-term goal of eradicating the virus from infected cells is still unattained. However, the use of combinations of both RT and PR inhibitors has resulted in significant increases in disease-free survival. This multiple attack is more effective, blocking two different steps of the virus replication cycle and causing a delay in the emergence of resistant strains. Therefore, it is evident that the development of new inhibitors targeted toward other viral proteins is of paramount importance. A further viral protein as potential target for antiretroviral therapy is HIV-1 integrase (IN). Recently, anti-IN agents in combination with RT and PR inhibitors have been found to be synergistic in vitro assays and a combination therapy that uses inhibitors of all three enzymes at the same time could result in a real breakthrough in the HIV-1 therapy. Unfortunately, no inhibitor of HIV-1 IN is currently used in clinical practice, and this fact led us to make greater efforts in research in this field. The full-length HIV-1 IN (288 amino acids) has three domains: the catalytic core, the C-terminal and the N-terminal domains. It is thought that the catalytic core contains the active site responsible for catalysis of all the reactions of integration. Three amino acids (Asp64, Asp116, and Glu152) in the catalytic core domain are highly conserved among retrotransposon and retroviral INs. Mutation of these residues generally leads to a loss of all the catalytic activities of these proteins, and they are therefore thought to be essential components of the IN active site. The catalytic core domain socked with 5-chloroindolyltetrazolylpropenone (5CITEP) (a potent inhibitor of IN reported by Shionogi Company) was resolved by D. Davies. The crystal structure shows a dimeric model in which two monomers interact with each other, but actually it is not clear whether IN works in vivo as a monomer, a dimer, or a tetramer. Multiple steps in the integration process are catalyzed by HIV-1 IN, as shown schematically in Fig. 1. The integration of HIV-1 DNA into the host chromosome is achieved by the IN performing a series of DNA cutting and joining reactions (A–C). The first step in the integration process is 3′ processing, in which the enzyme removes two nucleotides from each 3′ end of the proviral DNA, leaving recessed CA OHs at the 3′ ends. Moreover, IN cuts the human DNA at the site of integration 5 bases apart (Fig. 1A).

 In a second step, termed “strand transfer”, the IN protein joins the previously processed 3′ ends to the 5′ ends of strands of target DNA at the site of integration (Fig. 1B). Finally, in the 5′ end, the joining IN fills in the gaps and ligates the unjoined strands (Fig. 1C). (1)
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Fig. no. 1 Schematic steps for HIV-1 integration

HISTORY:

             In the 1980s an infectious disease started to plague human civilization. The coexistence of viruses and humans is a fight for survival for both because the invaders can kill the human but in doing so eliminate their own host. The body uses its immune system to protect it from bacteria, viruses and other disease-causing beings, and when it fails to do so immunodeficiency diseases occur. One such disease is acquired immunodeficiency syndrome (AIDS) which is most commonly a result of an infection by the human immunodeficiency virus (HIV). [2] Two closely related types of HIV have been identified, HIV-1 and HIV-2. While HIV-2 is spreading in India and West Africa, HIV-1 is more virulent and the number one cause of AIDS worldwide. Though some of the patients have different results in most cases people infected with HIV go on to develop AIDS and ultimately die of opportunistic infections or cancer. Integration to the retroviral genome is critical for gene expression and viral replication. The viral genome is reversely transcribed into the DNA of the infected cell by viral reverse transcriptase; the DNA is then integrated into the host-cell chromosomes with the aid of the viral integrase. RNA transcripts are produced from integrated viral DNA and serve both as mRNAs to direct the synthesis of viral proteins and later as RNA genomes of the new viral particles. Viral particles escape from the cell by budding from the plasma membrane, each enclosed in a membrane envelope. In this process HIV-1 integrase is essential and therefore a very promising target for anti-AIDS drug design. [3] Selective drug design is a possibility as HIV-1 integrase has no known cellular equivalent. Many integrase inhibitors have been discovered and designed but only a few of the molecules were developed further and got as far as phase II or phase III of clinical trials. Raltegravir (brand name Isentress®) was granted accelerated approval from FDA in October 2007 and from EMEA (now EMA) in December 2007.[4, 5] It was marketed as an antiretroviral drug (ARV) for HIV-1 infected adults who had already been exposed to a minimum of three ARV classes and showed multi-drug resistance. In general there are two main groups of integrase inhibitors; Integrase Strand Transfer inhibitors (INSTI) and Integrase Binding Inhibitors (INBI). INSTIs restrain the binding of pre-integration complex (PIC) and host DNA and INBIs restrain integrase and viral DNA binding. Raltegravir is an INSTI integrase inhibitor which inhibits both HIV-1 and HIV-2 replication. It is more potent than other previously known integrase inhibitors as well as causing fewer side effects. Raltegravir is currently the only HIV-1 integrase inhibitor being used to treat HIV infections but other drugs are in clinical trials, e.g. Elvitegravir and S/GSK1349572. 


The HIV-1 integrase enzyme


The HIV-1 integrase (IN) is a key enzyme in the replication mechanism of retroviruses. It is responsible the for transfer of virally encoded DNA into the host chromosome which is a necessary event in retroviral replication. Since IN has no equivalent in the host cell, integrase inhibitors have a high therapeutic index as they do not interfere with normal cellular processes


. 
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Fig. no. 2: Structural domains of the HIV-1 integrase


IN belongs, both mechanistically and structurally, to the super family of polynucleotidyl transferases 10 and is composed of 288 amino acids that form the 32 kDa protein. Retroviruses encode their enzymes (protease, reverse transcriptase and integrase) with the POL gene with the 3´end encoding for IN. [6]

IN is composed of 3 structurally independent, functional domains  

1. The N-terminal domain (NTD) encompasses amino acids 1-50 and contains two histidine residues (His12 and His16) and two cysteine residues (Cys40 and Cys43), all of which are absolutely conserved and form a HHCC zinc-finger motif. Single mutations of any of these four residues reduce IN enzymatic activity. The HHCC zinc-finger motif chelates one zinc atom per IN monomer. The NTD is required for higher order multimer formation which appears to be its primary role. The multimerization requires zinc atom that stabilizes the fold. 


2. The catalytic core domain (CCD), which encompasses amino acids 51- 212, contains the active site of IN but it can´t catalyze integration in the absence of NTD and CTD (the C-terminal domain). CCD contains three absolutely conserved negatively charged amino acids; D64, D116 and E152. These amino acids form the DDE motif that coordinates divalent metal ions (Mg2+ or Mn2+). 

             These metal ions are essential for the catalysis of integration. CCD has a mixed β and α structure with five β-sheets and six α helices that are linked by flexible loops. 

      The flexible loops allow conformational changes that are required for 3´processing of the viral DNA and strand transfer (STF) reactions which are two key steps of the integration reaction. CCD is essential for these steps and substitution of any of the residues in the DDE motif dramatically inhibits the activity of IN. 


3. The C-terminal domain (CTD), which encompasses amino acids 213-288, binds DNA nonspecifically and its interaction with NTD and CCD is required for IN 3´-processing and strand-transfer activities. CTD is the least conserved of the three domains. IN acts as a multimer and dimerization is required for the 3´-processing step, with tetrameric IN catalyzing the strand-transfer reaction. [6]

Function of HIV-1 integrase:

HIV-1 integration occurs through a multistep process that includes two catalytic reactions:

 3´endonucleolytic processing of proviral DNA ends (termed 3´processing) and integration of 3´-processed viral DNA into cellular DNA (referred to as strand transfer).[7] In 3´processing IN binds to a short sequence located at either end of the long terminal repeat (LTR) of the viral DNA and catalyzes endonucleotide cleavage. This results in elimination of a dinucleotide from each of the 3´ends of the LTR. Cleaved DNA is then used as a substrate for integration or strand transfer. 

          Strand transfer is a trans-esterification reaction involving a direct nuleophilic attack of the 3´hydroxy group of the two newly processed viral 3´-DNA ends on the phosphodiester backbone of the host target DNA. This leads to covalent insertion of viral DNA into the genome of the infected cell. Strand transfer occurs simultaneously at both ends of the viral DNA molecule, with an offset of precisely five base pairs between the two opposite points of insertion.

           The integration reaction is completed by removal of unpaired dinucleotides from the 5'- ends of the viral DNA, repair of the single-stranded gaps created between the viral and target DNA molecules and ligation of 3'-ends to 5'-ends of the host DNA. Divalent metals, Mg2+ or Mn2+, are required for 3'-processing and strand transfer steps as well as for assembly of IN onto specific viral donor DNA to form a complex that is competent to carry out either function. Because Mg2+ abundance over Mn 2+ is 1,000,000-fold in cells it's a more reasonable cofactor for integration.


Mechanism of action:

[image: image3.png]<o

3 Processing o ion \Rewrse

_|_ Py vseton Nowse

Integration

Inhibtors







Fig. no. 03: Integration of viral RNA into host cell DNA


        There are several ways to target integrase but strand transfer inhibition is the most common one. Other targets include, for example, the protein domains beyond the active site of IN. The domains interact with viral or host DNA and are important for binding to the enzyme. It is possible to hamper functions of the enzyme by disrupting or removing these bindings. PIC is a multimeric protein structure inside the host cell, composed of both viral and host proteins. Integrase is a part of PIC‘s viral component. PIC‘s viral and host proteins are believed to modulate intrinsic activity of the enzyme, shuttle PIC to the nucleus and direct integration of viral DNA into a transcriptionally active region of the host genome. If it were possible to exclude certain proteins from the PIC it would block the ability of the virus to integrate into the host genome. The process where the retroviral RNA is transcribed to DNA and then integrated into the host cell's genome is shown in figure 3.


IN strand transfer inhibitors (INSTIs)


Mg2+ and Mn2+ are critical cofactors in the integrase phase and if they are chelated it can cause functional impairment of IN. This gives the opportunity to design and develop highly efficient IN inhibitors (INIs). In fact, all small molecule HIV-1 INIs that are now being researched contain a structural motif that coordinates the two divalent magnesium ions in the enzyme’s active site. Raltegravir and elvitegravir share the same mechanism of action against integrase which is to bind to the active site of Mg2+ ions. Inhibitors compete directly with viral DNA for binding to integrase in order to inhibit 3‘-end processing.In doing this the inhibitors completely block the active site from binding to target DNA. 

      This way of inhibitions is called strand transfer inhibition.


Inhibition of the LEDGF/p75- integrase interaction


Lens epithelial derived growth factor is a host protein that binds to integrase and is crucial for viral replication. The mechanism of action is not precisely known but evidence suggest that LEDGF/p75 guides integrase to insert viral DNA into transcriptionally active sites of the host genome. Inhibitors of this protein are already being developed and patented. They are likely to be highly target specific and less prone to the development of resistance.


IN binding inhibitors


Another class of INIs could be IN binding inhibitors (INBIs) such as V-165. V-165 is a compound shown to inhibit integration but without obvious effect on viral DNA synthesis. When the mechanism of action was studied it showed that V-165 interferes with viral DNA-IN complex formation. Due to its interfering action it is classified as an IN binding inhibitor. Other compounds, such as styrylquinolines share similar mechanism by competing with the LTR substrate for IN binding (3)

Drug design


Binding


INSTIs bind tightly and specifically to the IN that is associated with the ends of the DNA by chelating the divalent metal ions (Mg2+) which is coordinated by the catalytic triad i.e. the DDE motif. The DDE motif is located in the CCD of IN and is the active site of the enzyme and hence INSTIs are so called active site inhibitors. INSTIs bind to a specific site close to the DDE motif of IN, a site that is present only in the conformation that occurs after processing of the 3´ viral DNA ends. Viral DNA may well form a part of the inhibitor binding site. The binding is a form of allosteric inhibition as it implies blockage of a specific integrase-viral DNA complex. This results in selective inhibition of the strand-transfer reaction, with no significant effect on the 3´-processing reaction. INSTIs may therefore be more specific and bind selectively to the target DNA binding site and hence be less toxic than bi functional inhibitors that are able to bind to both the donor and target binding sites. [8]
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Fig. no.4: Structure activity relationship of elvitegravir and raltegravir. A benzyl group in a hydrophobic pocket and a triad to chelate the two Mg2+ ions.

Two structural components are necessary for integrase binding:

       A hydrophobic benzyl moiety that buries into a highly hydrophobic pocket near the active site; and chelating triad that binds with two Mg2+ ions in a rather hydrophilic region, anchoring the inhibitor onto the protein surface. In fact, all potent integrase inhibitors possess a substituted benzyl component that is critical for maintaining 3‘end joining potency. Removal of the benzyl group prevents inhibitory function. Lipophylic substituents are therefore beneficial for the strand transfer inhibition, in particular the thiophenyl, furanyl and (thiophen-2-yl)phenyl substitutions. Heteroaromatic amine and amide also cause increase in 3‘ processing inhibitory action


.
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Fig. no. 5: Examples of integrase inhibitors.


        When catechol-based inhibitors of IN were researched it was observed that maintaining a planar relationship with the bis-hydroxylated aryl ring increases potency. The inhibitory activity could be further optimized by including a meta-chloro substituent, enhancing the interaction of the benzyl group with the adjacent hydrophobic pocket. A benzyl substituted hydroxyl group improves metal-chelating capability while a methoxy group (I) is much less potent due to steric clash by the additional methyl group with the catalytic metals. When researching diketo derivates, the central pyrrole ring of structure K in fig. 5 was replaced by a series of aromatic systems having various substitution patterns. That provided optimum relative orientation of the benzyl and diketoacid (DKA) site chain. Structure L in fig. 5 resulted in 100 fold increase in potency. Synthesized INIs with a quinoline subunit and an ancillary aromatic ring linked by functionalized spacers such as amide, hydrazide, urea and hydroxyprop-1-en-3-one moiety. They found that the amide group containing dervates were the most promising ones.By synthesizing series of styrylquinones researchers found out that a carboxyl group at C-7, a hydroxylgroup at C-8 in the quinoline subunit and an ancillary phenyl ring (Figure 5: Structure M) are required for inhibition, although alterations of the ring are tolerated. Two hydroxyl groups on the ancillary phenyl ring are also required for inhibitory potency.


Pharmacophore:
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Fig. No. 6: Binding of DKAs to DDE amino acids residues of integrase


Since critical structure information is scarce on HIV integrase catalysis it is difficult to find the exact pharmacophore for its inhibition. By studying the SAR and pharmacophore of a dual inhibitor scaffold, focusing both on integrase and reverse transcriptase (RT) it would be possible to observe anti-integrase activity. [8] By studying the SAR of HIV integrase inhibitors it was possible to find that for optimal integrase inhibition the pharmacophore requires a regiospecific (N-1) DKA of a specific length. DKA functionality or its heterocyclicbioisostere that selectively inhibit strand transfer seem to be present in all major chemotypes of integrase inhibitors. As detailed in the SAR discussion above the two necessary structural components of INI are a benzyl hydrophobic moiety and a chelating triad to bind the Mg2+ ions. For the triad to bind the Mg2+ ions has to be ionized  and thus a Pharmacophore bioisostere has to be ionized too and the benzyl Pharmacophore bioisostere must to be very hydrophobic. However, despite previous success in clinical development (raltegravir), a detailed binding model is lacking so it has proven difficult to structure base the design of integrase inhibitors. When the Pharmacophore of salicylic acid and catechol were merged, new chemical scaffolds were created. The adjacent hydroxyl and carboxylic groups on salicylic acid could bind with the metal ions and serve as their pharmacophore. Polyhydroxylated aromatic inhibitors are mostly active against strand transfer reactions and 3‘-processing which suggests a mechanism that targets both steps. This is a very important part of the compound as it can be used to bind to the divalent metal on the active site of IN and as such be effective against viral strains that are resistant to strand transfer specific inhibitors.


Resistance


          It has been discovered that over 60 variations of INSTI mutations cause in vivo and in vitro resistance. Due to these mutations and development of resistance the inhibitors are less effective against the virus. Resistance of INI corresponds to those of other ARV drugs. First IN resistance is caused by primary mutations that decrease INI sensitivity in combination with secondary mutations that further reduce virus sensitivity and/or repair decreased fitness of the virus. Secondly there is a genetic barrier to INI resistance, defined by the number of mutations required for the loss of clinical INI activity. Thirdly there is extensive but incomplete cross-resistance among the INIs. A loop containing amino acid residues 140-149 is located in the catalytic-core domain and is important for IN function as mentioned before. This loop is flexible and even though its role is not quite known it is thought to be important and its functions critical for DNA binding. This resistance appears within mutations in this IN-coding region. The resistance to raltegravir and elvitegravir is primarily due to the same two mutation pathways but other primary mutations are also involved for each of the drugs. Some mutations increase resistance to the drugs to a large extent than others. For example one of the most common mutation pathway increases the resistance to raltegravir up to 100 times more than the second most common one. Resistance to Integrase Inhibitor S/GSK1349572 is still being developed and the resistance has not been fully characterized. When it was assessed alongside the primary mutations of raltegravir and elvitegravir it did not show cross-resistance which means that it could be useful against drug resistant viruses. Raltegravir has limited intestinal absorption and thus resistance cannot be overcome by prescribing higher doses. Newer drugs are warranted to overcome this pharmacological disadvantage and gain plasma concentrations high enough to target raltegravir-resistant viruses. [9]

Current status
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Fig. no.7: Structure of MK-2048 with important Pharmacophore highlighted


                The search for new ways to improve treatment of patients infected with HIV is constant. Considering the experience that has been gathered since the 1980s of ARV drug development arrival of INSTIs as a new potent class of ARV signals a new era in the treatment of HIV. Development of a successful INSTI treatment was accomplished when raltegravir was discovered by Merck Sharp & Dohme Limited. 

         A conditional marketing authorization was licensed in December 2007 by the European Commission which was valid throughout the European Union. In 2009 this authorization was converted to a full marketing authorization and in the same year the FDA changed the approval from accelerated to traditional approval and listed the drug as a first line ARV treatment agent. The second INSTI drug, elvitegravir, was identified by Japan Tobacco and clinical trials began in 2005. In 2011 the drug was still in phase three clinical trials, where it is being compared to raltegravir, in treatment experienced subjects and is also in phase two development in naïve subjects as a part of a multidrug treatment. S/GSK1349572 is a integrase inhibitor discovered by ViiV /Shinongi which was entering phase three in clinical trials in 2011. This new drug is promising and seems to be well tolerated and so far shows better results than both Raltegravir and Elvitegravir. Since there have been problems with resistance to Raltegravir and Elvitegravir, scientists have started to work on new second generation integrase inhibitors, such as MK-2048 which in 2009 was developed by Merck. It's a prototype second generation INSTI that remains potent against viruses containing mutations against Raltegravir and Elvitegravir. The mechanism of action and SAR of MK-2048 is the same as of the other INSTIs, the structure of MK-2048 shown in figure 6 with essential Pharmacophore highlighted. Even though drugs discussed above are promising the development has a long way to go and many things are still unknown about the efficacy, safety and mechanism of action of these drugs.

1. Raltegravir
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Fig. no. 8: Structure of Raltegravir

                       Raltegravir is N-(2-(4-(4-fluorobenzylcarbamoyl)-5-hydroxy-1-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)propan-2-yl) Raltegravir (MK-0518, brand name Isentress) is an antiretroviral drug produced by Merck & Co., used to treat HIV infection. It received approval by the U.S. Food and Drug Administration (FDA) in October 2007, the first of a new class of HIV drugs, the integrase inhibitors, to receive such approval. In December 2011, it received FDA approval for pediatric use in patients ages 2-18, taken in pill form orally twice a day by prescription with two other antiretroviral medications to form the cocktail (most anti-HIV drugs regimens for adults and children use these cocktails).  Raltegravir is available in chewable form but- because the two tablet formulations are not interchangeable- the chewable pills are only approved for use in children two to 11. Older adolescents will use the adult formulation. [10]

Research


              Raltegravir significantly alters HIV viral dynamics and decay and further research in this area is ongoing. In clinical trials patients taking Raltegravir achieved viral loads less than 50 copies per millitre sooner than those taking similarly potent Non-nucleoside Reverse Transcriptase Inhibitors or Protease Inhibitors. This statistically significant difference in viral load reduction has caused some HIV researchers to begin questioning long held paradigms about HIV viral dynamics and decay. Research into Raltegravir's ability to affect latent viral reservoirs and possibly aid in the eradication of HIV is currently ongoing.[11]

Research results were published in the New England Journal of Medicine on July 24, 2008. The authors concluded that "raltegravir plus optimized background therapy provided better viral suppression than optimized background therapy alone for at least 48 weeks."


Research on human cytomegalovirus (HCMV) terminase proteins demonstrated that Raltegravir may block viral replication of the herpesviruses.

Tolerability


              Raltegravir was generally well tolerated when used in combination with optimized background therapy regimens in treatment-experienced patients with HIV-1 infection in trials of up to 48 weeks' duration.


2. Elvitegravir
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Fig. no. 9: Structure of Elvitegravir

Elvitegravir is 6-[(3-Chloro-2-fluorophenyl) methyl]-1-[(2S)-1-hydroxy-3-methylbutan-2-yl]-7-methoxy-4-oxoquinoline-3-carboxylic acid

      Elvitegravir (EVG) is an investigational new drug for the treatment of HIV infection. It acts as an integrase inhibitor. It is undergoing Phase III clinical trial conducted by the pharmaceutical company Gilead Sciences, which licensed EVG from Japan Tobacco in March 2008. According to the results of the phase II clinical trial, patients taking once-daily elvitegravir boosted by Ritonavir had greater reductions in viral load after 24 weeks compared to individuals randomized to receive a Ritonavir-boosted protease inhibitor. [12]

CONCLUSION

             As the importance of HIV1 integrase inhibitors remains unresolved in the treatment of HIV and AIDS most of the times retroviral therapy finds certain limitations in the treatment of HIV resistant strains. The newer class of HIV 1 integrase inhibitors may prove as an effective tool in the treatment of HIV and AIDS. In recent days the HIV 1 integrase inhibitors getting more importance in the treatment of HIV and AIDS. 

                 Most of the research work in the field of drug design has been directed towards the development of newer derivatives of Raltegravir and Elvitegravir in recent advances some members of this class are currently in clinical trials which may come in market in future. As a new class of drug targeting the third essential enzyme for HIV replication (along with reverse transcriptase and protease), the integrase inhibitors are a welcome addition to the treatment armamentarium for HIV/AIDS in treatment-experienced patients failing available antiretroviral regimens. Clinically relevant interactions with other available antiretroviral agents and long-term adverse effects and tolerability will have an impact


on the future clinical value of the integrase inhibitors. 

           Definition of the genetic barriers to        integrase-inhibitor resistance, determinants of choice in the divergent pathways to resistance, and questions regarding cross resistance across the class will need to be addressed. The integrase inhibitors should also be studied further as potential components in first-line HAART regimens based on available experimental data with raltegravir in combination with NRTIs. This would be particularly true for those in whom PI- or NNRTI-based therapy may be less than optimal. Finally, further safety, pharmacokinetic, and tolerability studies of raltegravir in special populations are warranted.

        When considered as a whole, the promising efficacy and tolerability profile of the integrase inhibitors, absence of cross-resistance with other antiretroviral classes, and demonstrated synergism of the integrase inhibitors in combination with approved antiretroviral agents place the minimum a position to become important components of effective combination antiretroviral regimens in individuals living with HIV/AIDS
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