

PREPARATION AND EVALUATION OF FAST DISSOLVING TABLETS OF SELECTED DRUGS EMPLOYING SUPERDISINTEGRANTS

K. P. R. Chowdary*
K. V. N. R. Aishwarya

Vikas Institute of Pharmaceutical Sciences, Nidigatla Road, Rajahmundry- 533103

Journal of Global Trends in Pharmaceutical Sciences

ABSTRACT

Fast dissolving tablets (FDTs) are novel types of tablets that dissolve / disintegrate / disperse in saliva within few seconds without water. Paracetamol is a widely prescribed antipyretic and analgesic drug for all age groups. Several types of paracetamol products in the form of tablets, dispersible tablets, suspensions, syrups and FDTs are available commercially. Irbesartan, a widely prescribed anti-hypertensive drug is also poorly soluble and require enhancement in solubility and dissolution rate in its formulation development. These two drugs are suitable for formulation of fast dissolving tablets to provide rapid disintegration and fast dissolution of the drug. The objective of the study is to formulate and evaluate FDTs of (i) paracetamol and (ii) irbesartan employing three known superdisintegrants namely Crospovidone, Croscarmellose sodium and Primojet and one new coprocessed excipient namely Pregelatinised starch-PEG 1500-Aerosil. The FDTs were prepared by wet granulation method and were evaluated for drug content, hardness, friability, disintegration time, wetting time, moisture absorption and dissolution rate.

Paracetamol FDTs prepared employing Crospovidone and Croscarmellose sodium disintegrated rapidly within 21-28 sec whereas irbesartan FDTs prepared with Crospovidone and Croscarmellose sodium disintegrated within 60-75 sec. The wetting time of these FDTs were in the range 5-8 sec in the case of paracetamol and 30-50 sec in the case of irbesartan. Among the four superdisintegrants tested, Crospovidone and Croscarmellose sodium gave rapid disintegration and dissolution of the FDTs prepared. The increasing order of dissolution rate

(K_1) observed with various superdisintegrants was Crospovidone > Croscarmellose sodium > PGS-PEG-Aerosil coprocessed excipient > Primojet in the case of both paracetamol and irbesartan FDTs. Paracetamol FDTs formulated employing Crospovidone, Croscarmellose sodium and PGS-PEG-Aerosil coprocessed excipient and irbesartan FDTs formulated employing Crospovidone gave rapid dissolution fulfilling the corresponding official dissolution rate test specification prescribed in pharmacopoeias. The new coprocessed excipient, Pregelatinised starch-PEG-Aerosil is comparable to the known superdisintegrants for formulation of FDTs.

Keywords: Fast dissolving tablets, Paracetamol, Irbesartan, Superdisintegrants, Wet granulation

INTRODUCTION

Oral route is the most preferred route for administration of various drugs because it is regarded as safest, most convenient and economical route¹. Tablets and hard gelatin capsules constitute a major portion of drug delivery systems that are currently available. However, many patient groups such as the elderly, children and patients who are mentally retarded, uncooperative, nauseated or on reduced liquid-intake/ diets have difficulties

swallowing these dosage forms². To overcome these problems, Fast Dissolving Tablets (FDTs) have been developed as innovative drug delivery systems. FDTs are novel types of tablets that dissolve/ disintegrate/disperse in saliva within few seconds without water.³ Fast dissolving drug delivery systems (FDDDS) are a new generation of formulations which combine the advantages of both liquid and conventional tablet formulations and at the same time, offer added advantages over both the traditional dosage forms. They provide the convenience of a tablet formulation and also allow the ease of swallowing provided by a liquid formulation. Currently these tablets are available in the market for treating many

Address for correspondence

Prof. K. P. R. Chowdary

Mobile: 9866283578

E-mail: prof.kprchowdary@rediffmail.com

disease conditions like hypertension, migraine, dysphasia, nausea, vomiting, Parkinson's disease, schizophrenia and pediatric emergency⁴⁻⁸.

(USFDA) defined FDTs as " A solid dosage form containing medicinal substances or active ingredients which disintegrate rapidly within a few seconds when placed up on tongue.FDTs can be prepared by various conventional methods like direct compression, wet granulation, melt granulation, moulding, spray drying, freeze drying, sublimation and by addition of superdisintegrants. FDTs disintegrate and / or dissolve rapidly in the saliva without need for water, releasing the drug. Some drugs are absorbed from the mouth, pharynx and esophagus as the saliva passes down into the stomach. In such cases, bioavailability of drug is significantly greater than those observed from conventional tablet dosage form⁵.

The objective of the present study is to formulate and evaluate fast dissolving tablets (FDTs) of two selected drugs namely (i) paracetamol and (ii) irbesartan employing three known superdisintegrants namely Crospovidone, Croscarmellose sodium and Primojel and a new Coprocessed excipient namely Pregelatinised starch-PEG 1500-Aerosil (PGS-PEG-Aerosil). Paracetamol is a widely prescribed antipyretic and analgesic drug for all age groups. Several types of paracetamol products in the form of tablets, dispersible tablets, suspensions, syrups and FDTs are available commercially. Irbesartan, a widely prescribed anti-hypertensive drug is also poorly soluble and require enhancement in solubility and dissolution rate in its formulation development .These two drugs are suitable for formulation of fast dissolving tablets to provide rapid disintegration and fast dissolution of the drug. Fast dissolving tablets were prepared by wet granulation method and were evaluated.

EXPERIMENTAL

Materials:

Paracetamol and irbesartan were gift samples from M/s Eisai Pharma technology Pvt. Ltd., Parawada, Visakhapatnam. Crospovidone, Croscarmellose sodium and Primojel were gift samples from M/s Natco Pharma, Hyderabad. Lactose, PVP K-30, PEG 1500, Rice starch, Aerosil, talc and magnesium stearate were

procured from commercial sources. PGS-PEG-Aerosil coprocessed excipient was prepared in the laboratory. All other materials used were of pharmacopoeial grade.

Methods:

Estimation of Paracetamol:

An U.V spectrophotometric method based on the measurement of absorbance at 253 nm in phosphate buffer of pH 5.8 was used for the estimation of paracetamol. The method obeyed Beer's law in the concentration range 0 - 10 µg /ml. When a standard drug solution was assayed repeatedly (n=6), the accuracy and precision were found to be 0.8 % and 1.2% respectively.

Estimation of Irbesartan:

An U.V spectrophotometric method based on the measurement of absorbance at 244nm in 0.1 N hydrochloric acid was used for the estimation of irbesartan. The method obeyed Beer's law in the concentration range 0 - 10 µg /ml. When a standard drug solution was assayed repeatedly (n=6), the accuracy and precision were found to be 1.1 % and 1.4% respectively.

Preparation of PGS-PEG-Aerosil Coprocessed Excipient:

Rice starch (15 parts) and PEG 1500 (5 parts) and Aerosil (0.4 parts) were dispersed in 40 parts of water to form smooth slurry. Purified water (40 parts) was taken in a separate beaker and heated to boiling. Starch-PEG-Aerosil slurry was added to boiling water while stirring. Stirring and heating was continued for 15 to 20 minutes to form a thick mass. To the mass formed, acetone (40 parts) was added and mixed thoroughly to remove the water in the product formed. The product formed was collected by filtration and further dried at 85°C until dry. The dried product was grinded and sized to obtain -36+80 mesh (302.5 µm) sized particles.

Preparation of FDTs:

Fast dissolving tablets of (i) paracetamol and (ii) irbesartan were prepared by wet granulation method employing various superdisintegrants as per the formulae given in Table 1. Drug (paracetamol / irbesartan), lactose and PVP were blended thoroughly in a dry mortar and granulated using water (q.s) as

granulating fluid. The wet mass formed was pressed through mesh no: 16. The wet granules were dried at 60^0 C for 1 hour. The dried granules were again passed through mesh no: 16 to break the aggregates formed and to obtain discrete granules. Superdisintegrant, talc, magnesium stearate and aerosil were passed through mesh no: 80 and collected on to the bed of tablet granulations and mixed. The tablet granulations were blended thoroughly in a closed polyethene bag and compressed into 250 mg tablets using RIMEK tablet punching machine employing 9mm flat punches.

Evaluation of Fast Dissolving Tablets Prepared:

Uniformity of Weight⁹:

The weights were determined by using Shimadzu balance (Model ATY 224).

Weight control is based on a sample of 20 tablets.

Tablet Hardness¹⁰:

The hardness of prepared tablets were determined by using Monsanto hardness tester and measured in terms of kg/cm².

Tablet Friability¹¹:

The friability of the tablets were measured in a Roche friabilator using the formula

$$\text{Friability} = [(\text{Initial weight} - \text{Final weight}) / (\text{Initial weight})] \times 100\%$$

Drug Content¹²:

Weighed tablets (5) were powdered using a glass mortar and pestle. An accurately weighed quantity of powder equivalent to 20mg of drug was taken into 100 ml volumetric flask, dissolved in phosphate buffer of pH 5.8 in the case of paracetamol and in 0.1 N hydrochloric acid in the case of irbesartan and the solution was filtered through whatman filter paper no.41. The filtrate in each case was collected and suitably diluted and assayed for the drug content by the UV spectrophotometric method described above.

Disintegration test¹²:

Disintegration time of the tablets was determined using single unit disintegration test apparatus (Make: Paramount) employing water as test fluid.

Wetting Time¹³:

The wetting time of the tablets was measured as follows. Five circular tissuepapers of 10 cm diameter are placed in a petridish with a 10 cm diameter. 10 ml of water-containing amaranth a water soluble dye is added to petridish. A tablet is carefully placed on the surface of the tissue paper. The time required for water to reach upper surface of the tablet is noted as wetting time.

Water Absorption Ratio¹⁴:

A piece of tissue paper folded twice was placed in a small Petri dish containing 6 ml of water. A tablet was put on the tissue paper and allowed to completely wet. The wetted tablet was then weighed. Water absorption ratio, R was determined using following equation.

$$R = 100 \times (W_a - W_b) / W_a$$

Where, W_a = Weight of tablet after water absorption

W_b = Weight of tablet before water absorption.

Dissolution Rate Study:

Dissolution rate of FDT's prepared was studied employing eight station dissolution rate test apparatus (LABINDIA, DS 8000) using paddle stirrer at 50 rpm and at a temperature of $37^{\circ}\text{C} \pm 1^{\circ}\text{C}$. Phosphate buffer of pH 5.8 (900ml) and 0.1 N hydrochloric acid (900 ml) were used as dissolution fluid for paracetamol and irbesartan tablets respectively. One tablet was used in each test. Samples of dissolution fluid (5 ml) were withdrawn through a filter at different time intervals and assayed for paracetamol at 253 nm and for irbesartan at 244 nm. The sample of dissolution fluid withdrawn at each time was replaced with fresh drug free dissolution fluid and a suitable correction was made for the amount of drug present in the samples withdrawn. Each dissolution experiment is run in triplicate (n=3).

RESULTS AND DISCUSSION

Fast dissolving tabletsof (i) paracetamol and (ii)irbesartan were formulated employing four superdisintegrants namely Crospovidone, Croscarmellose sodium, Primojel and PGS-PEG-Aerosil coprocessed excipient. All superdisintegrants were used at 5 % concentration in the formula. Our earlier studies indicated¹⁵ that 5 % concentration of

superdisintegrant is optimum for formulation of FDT's with very rapid disintegration character. The tablets were prepared by wet granulation method as per the formulae given in Table 1 and evaluated for various physical parameters and dissolution rate. The physical parameters of the FDTs prepared are given in Table 2. The hardness of the tablets was in the range 4.5-5.5 kg/cm². Percent weight loss in the friability test was less than 0.70 % in all the cases. Drug content of the tablets prepared was within 100±3 % of the labeled claim.

All the FDTs prepared disintegrated within 2 min 50 sec. Among the four superdisintegrants tested, Crospovidone and Croscarmellose sodium gave rapid disintegration of the tablets with both the drugs. Paracetamol FDTs formulated employing 5% Crospovidone (PF1) and 5 % Croscarmellose sodium (PF2) disintegrated within 21 and 28 sec and the wetting time of these tablets was 5 and 8 sec respectively. Water absorption ratio (%) of these tablets was 96.64 % and 74.97 % respectively. Irbesartan FDTs formulated employing 5% Crospovidone (IF1) and 5 % Croscarmellose sodium (IF2) disintegrated within 60 sec and 75 sec and the wetting time of these tablets was 30 and 50 sec respectively. Water absorption ratio (%) of these tablets was 96.45 % and 82.15 % respectively.

The results of dissolution rate studies are given in Table 3 and shown in Figs. 1–2. All the FDTs prepared gave rapid dissolution of contained drug. Drug dissolution from the FDTs prepared followed first order kinetics with coefficient of determination (R^2) values greater than 0.950 in all the cases. The first order dissolution rate constants (K_1) were calculated from the slope of the first order linear plots. Dissolution efficiency (DE_{30}) values were calculated as suggested by Khan¹⁶. The dissolution parameters estimated are summarized in Table 3.

The increasing order of dissolution rate (K_1) observed with various superdisintegrants was Crospovidone>Croscarmellose sodium>PGS-PEG-Aerosil coprocessed excipient > Primojel in the case of both paracetamol and irbesartan FDTs. The same increasing order was also observed based on DE_{30} values.

IP 2010 prescribed a dissolution rate of NLT 80 % in 30 min for paracetamol tablets. USP 2008 prescribed a dissolution rate of NLT 80 % in 20 min for irbesartan tablets. Paracetamol FDTs formulated employing Crospovidone, Croscarmellose sodium and PGS-PEG-Aerosil coprocessed excipient gave more than 95 % dissolution in 30 min fulfilling the official dissolution rate specification.

Irbesartan FDTs formulated employing Crospovidone gave more than 80 % dissolution in 20 min fulfilling the official dissolution rate specification. FDTs formulated using Crospovidone (PF 1) and Croscarmellose sodium (PF 2) gave rapid and higher dissolution of paracetamol than Crocin Advance, a commercial Immediate Release (IR) tablet (Fig 1). The new coprocessed excipient, Pregelatinised starch- PEG-Aerosil is comparable to the known superdisintegrants for formulation of FDTs.

Table 1: Formulae of Fast dissolving tablets prepared


Ingredient (mg / tablet)	Formulation							
	PF 1	PF 2	PF 3	PF 4	IF 1	IF 2	IF 3	IF 4
Paracetamol	120	120	120	120	-	-	-	-
Irbesartan	-	-	-	-	75	75	75	75
Crospovidone	12.5	-	-	-	12.5	-	-	-
Croscarmellose sodium	-	12.5	-	-	-	12.5	-	-
Primojel	-	-	12.5	-	-	-	12.5	-
PGS-PEG-Aerosil coprocessed excipient	-	-	-	12.5	-	-	-	12.5
PVP K-30	5	5	5	5	5	5	5	5
Talc	5	5	5	5	5	5	5	5
Magnesium stearate	5	5	5	5	5	5	5	5
Aerosil	5	5	5	5	5	5	5	5
Lactose	97.5	97.5	97.5	97.5	142.5	142.5	142.5	142.5
Total weight (mg)	250	250	250	250	250	250	250	250

Table 2: Physical Parameters of FDTs Prepared

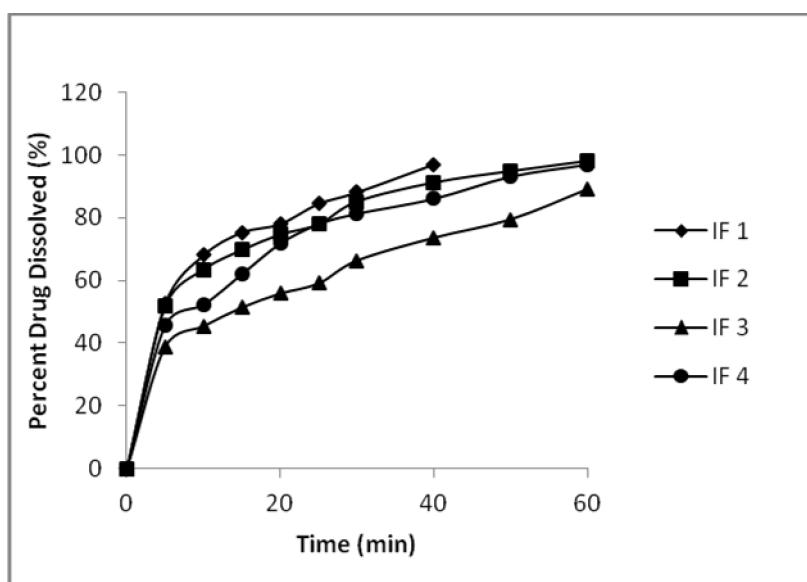

Formulation	Hardness (Kg/cm ²)	Friability (% Wt loss)	Disintegration time (min-sec)	Drug content (mg/tablet)	Wetting time (Sec)	Water absorption ratio (%)
PF 1	4.5	0.54	0-21	123.84	5	96.64
PF 2	4.0	0.34	0-28	118.39	8	74.97
PF 3	5.5	0.36	2 – 2	116.76	72	23.39
PF 4	4.5	0.70	1 – 30	126.24	40	45.12
Crocin Advance (IR Tablets)	4.5	0.13	2 -0	495.03	150	58.81
IF 1	4	0.640	1-0	122.28	30	96.45
IF 2	4	0.485	1-15	125.40	50	82.15
IF 3	5	0.607	2-25	124.62	170	32.89
IF 4	4.5	0.708	1-30	123.12	60	74.97

Table 3: Dissolution Parameters of FDTs Prepared

Formulation	Superdisintegrant (% used)	Dissolution Parameter			
		PD ₁₀ (%)	DE ₃₀ (%)	T ₅₀ (min)	K ₁ × 10 ² (min)
PF 1	Crospovidone(5)	68.53	75.56	4.5	11.97
PF 2	Croscarmellose(5)	63.11	67.38	5	9.21
PF 3	Primojel(5)	63.84	61.61	4.5	7.36
PF 4	PGS-PEG-Aerosil(5)	64.58	64.28	8.5	8.75
Crocin Advance (IR Tablets)	-	57.90	65.85	7	9.21
IF 1	Crospovidone (5)	68.13	67.13	5	8.29
IF 2	Croscarmellose(5)	63.49	63.36	5	6.44
IF 3	Primojel (5)	45.45	47.29	14	3.68
IF 4	PGS-PEG-Aerosil(5)	52.30	58.44	8.5	5.52

Fig. 1: Dissolution Profiles of Paracetamol Fast Dissolving Tablets Prepared

Fig. 2: Dissolution Profiles of Irbesartan Fast Dissolving Tablets Prepared

CONCLUSIONS

1. Paracetamol FDTs prepared employing Crospovidone and Croscarmellosesodium disintegrated rapidly within 21-28 sec whereas irbesartan FDTs prepared with Crospovidone and Croscarmellose sodium disintegrated within 60-75 sec . The wetting time of these FDTs were in the range 5-8 sec in the case of paracetamol and 30-50 sec in the case of irbesartan.
2. Among the four superdisintegrants tested, Crospovidone and Croscarmellose sodium gave rapid disintegration and dissolution of the FDTs prepared.

3. The increasing order of dissolution rate (K_1) observed with various superdisintegrants was Crospovidone>Croscarmellosesodium > PGS-PEG-Aerosil coprocessedexcipient > Primojel in the case of both paracetamol and irbesartan FDTs.
4. Paracetamol FDTs formulated employing Crospovidone ,Croscarmellose sodium and PGS-PEG-Aerosil coprocessedexcipient and irbesartan FDTs formulated employing Crospovidone gave rapid dissolution fulfilling the corresponding official dissolution rate test specification prescribed in pharmacopoeias.

5. The new coprocessed excipient, Pregelatinised starch- PEG-Aerosil is comparable to the known superdisintegrants for formulation of FDTs.

REFERENCES

- Shukla D, Chakraborty S, Singh S, Mishra B. Mouth dissolving tablets I: An overview of formulation technology. *Sci Pharm.* 2009, 77, 309-26.
- Ganesh NS, Deshpande KB. Orosoluble tablets: An Overview of formulation and technology. *International Journal of Pharma and Bio Sciences*, 2011,2(1) 726-734.
- Swamivelmanickam M, Manavalan R, Valliappan K, Nagar A. Mouth Dissolving Tablets: An Overview. *IJPSR*, 2010, 1 (12): 43-55.
- Jha SK, Geethalakshmi A, Bhatia V, Shukla TP. Orally disintegrating tablets - Technology for mankind. *J Global Pharma technol.* 2010, 2: 11-17.
- Hartsell T, Long D, Kirsch JR. The efficacy of postoperative Ondansetron (Zofran®) orally disintegrating tablets for preventing nausea and vomiting after acoustic neuroma surgery. *Anesthesia & Analgesia*. 2005, 101(5), 1492.
- Clarke A, Jankovic J. Selegiline oral treatment of Parkinson's disease. *Therapy*. 2006, 3(3), 349-56.
- Chue P, Welch R, Binder C. Acceptability and disintegration rates of orally disintegrating risperidone tablets in patients with schizophrenia or schizoaffective disorder. *Canadian journal of psychiatry*. 2004, 49(10), 701-3
- Freedman SB, Adler M, Seshadri R, Powell EC. Oral ondansetron for gastroenteritis in a pediatric emergency department. *New England Journal of Medicine*. 2006, 354(16), 698-705.
- Indian Pharmacopoeia. 4th Ed, Ministry of Health and Family Welfare, Govt. of India. The controller of publications, New Delhi, 1996, pp. A-54.
- Aulton EM. *Pharmaceutics. The science of dosage form design.* 2nd ed., ELBS/Chuchill Livingstone, London; 2002: 4.
- L. Lachman, A. Lieberman and J.L. Kinig. *The Theory and Practice of Industrial Pharmacy*, Varghese Publishing House, 1991, pp: 67-68.
- Banker GS, Anderson NR. Tablets In:LachmanN,Liberman HA, Kanig JL, editors. *The theory and practice of industrial pharmacy.* 3rd ed. Bombay: Varghese Publication House; 1987: 286-300.
- S.K. Battue, M.A. Repay, S. Maunder and M.Y. Rio. *Dev. Ind. Pharm.* 2007; 33: 1225-1232.
- Y. Bi, H. Sunada, Y. Yonezawa, K. Danjo, A. Otsuka and K. Iida. *Chem Pharm Bull.* 1996; 44: 2121-2127.
- Chowdary, KPR and Aishwarya, KVNR. *JGTPS*, 2013, 4(4), 1329-1334.
- Khan KA. *J Pharm Pharmacol.* 1975; 27 : 48