

SYNCHRONOUS DETERMINATION OF PARACETAMOL AND DICLOFENAC SODIUM USING ACID TREATED LOCAL SYRIAN CLAY AS CHROMATOGRAPHIC SUPPORT INTLC – DENSITOMETRIC METHOD

Amir Alhaj SAKUR^{*1}, Firas MANNA¹, Mahamed Yahia ZEIN EDDIN²

¹Department of Analytical and food Chemistry, Faculty of Pharmacy, University of Aleppo, Syria

²Department of Chemistry, Faculty of Sciences, University of Aleppo, Syria

***Corresponding author:** profsakur@gmail.com

ARTICLE INFO

Key Words

Paracetamol,
Diclofenac Sodium, Acid
treated local Syrian clay,
Bentonite, Simultaneous
Determination, TLC

Access this article online

Website:

<https://www.jgtps.com/>

Quick Response Code:

ABSTRACT

A New Chromatographic Support, was prepared from acid treated Local Syrian Clay (S.BAW) and using it for preparing chromatographic thin layers (0.25 mm thickness) to separate and Synchronous determination of Paracetamol, and Diclofenac Sodium in pure form and in tablets. The separation carried out using mobile phase consisted of Ethylacetate:methanol:ammonia solution (55:5:3) v/v. The specific surface area of Acid treated Local Syrian Clay, was 91m²/g. Quantification was carried out densitometrically, at $\lambda = 250$ nm for Paracetamol, and at $\lambda = 290$ nm for Diclofenac Sodium. The retardation factors (R_f) of Sodium Diclofenac, and Paracetamol, were 0.35, and 0.84 respectively. Calibration curves were obtained in the ranges of 5.0-40.0 μ g/spot, and 2.0-16.0 μ g/spot for standard solutions of Paracetamol, and Diclofenac Sodium respectively. The New Prepared Chromatographic Thin Layers were successfully applied for analysis of commercial dosage forms (tablets) containing the drugs with average recovery 99.25-101.20% with RSD not more than 4.97%.

INTRODUCTION

Local Syrian clay (Syrian Bentonite) is rocky clay , it is considered as a porous cheap material naturally occurring in Syria. Local Syrian clay (Syrian Bentonite) constituents were determined , and Silica represents the major constituent of clay, in addition to several amounts of other metallic oxides. Local Syrian clay (Syrian Bentonite) consists of 47% SiO₂, 14.4% Al₂O₃ and some other oxides as Fe₂O₃, MgO, CaO, Na₂O and others [1- 4]. Bentonite has large pore volumes and high specific surface area. The thermal treatment causes decreasing of its specific surface area with increasing in the temperature of thermal treatment , and prolonged washing of bentonite

by 6 N HCl removes all soluble oxides and about 67% of total iron oxide from the adsorbent, causing decrease of specific surface area and hydrolysis of siloxane groups on the surface of the support to yield more silanol groups [1- 4]. Bentonite clays are used in many industrial products and processes, drilling fluids, certain lubricating grease [5], and it can be used as chromatographic supports in gas chromatography to separate different of chemical mixtures after grafting with different methods. Modification of the support surface by reaction with silanol groups was carried out by means of chlorosilane compounds as reactants, or by condensation of a suitable polymer as PEG-20M [6-10]. Bentonite is used

as stationary phase in thin layer chromatography to separate some metal ions, and some drugs mixtures [11-14].

Acetaminophen (Paracetamol): $C_8H_9NO_2$, Chemically it is N-(4hydroxyphenyl) acetamide (figure 1,a). It is the most commonly taken analgesic worldwide and is recommended as first-line therapy in pain conditions by the World Health Organization (WHO). It is also used for its antipyretic effects, helping to reduce fever. Acetaminophen is often found combined with other drugs in more than 600 over the counter (OTC) allergy medications, cold medications, sleep medications, pain relievers, and other products [15,16].

Diclofenac Sodium: $C_{14}H_{10}Cl_2NNaO_2$ is a non-steroidal anti-inflammatory agent (NSAID) with antipyretic and analgesic actions. It is primarily available as the sodium salt. Chemically it is 2-{2-[(2,6dichlorophenyl)amino]phenyl}acetic acid (figure 1,b). It is used For the acute and chronic treatment of signs and symptoms of osteoarthritis and rheumatoid arthritis. The anti-inflammatory effects of diclofenac Sodium are believed to be due to inhibition of both leukocyte migration and the enzyme cyclooxygenase (COX-1 and COX-2), leading to the peripheral inhibition of prostaglandin synthesis. As prostaglandins sensitize pain receptors, inhibition of their synthesis is responsible for the analgesic effects of diclofenac. Antipyretic effects may be due to action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat dissipation [15-16]. The literature review described HPTLC, HPLC and UV-visible spectrophotometric method for determination of paracetamol [17-21]; HPTLC, HPLC, UV-visible spectrophotometry, Potentiometric titration method for diclofenac sodium [17,18,19, 22-27], The literature review described HPTLC, HPLC and UV-visible spectrophotometric method for simultaneous determination of paracetamol, and diclofenac sodium in combination with other drugs or with each other [28 - 43] . The aim of this study was to prepare a new chromatographic support from local Syrian clay by Acid Treated,(S .B_{AW})and using it in thin layer chromatography to develop, and validate analytical procedure for

Synchronous determination of paracetamol, and diclofenac sodium in a tablet. The developed analytical procedure was successfully used for routine analysis of paracetamol, and diclofenac sodium in tablets dosage form without any interference from involved excipients.

2. MATERIALS AND METHODS:

2.1Apparatus: Specific Surface area was measured using a Spectrophotometric method depend on methylene Blue adsorption on JASCO V-650 dual beam UV-VIS spectrophotometer. Scanner-densitometer CS-9301PC (SHIMADZU) equipped with mercury, tungsten and deuterium lamps, CAMAG Hand Operated TLC Coater (Switzerland), CAMAG UV Cabinet for assessing and marking thin layer chromatograms under UV light (Switzerland), planetary ball mill, Vibration Sieves of size less than (20) μm (Germany) and different size of syringe (Hamilton, Switzerland) were used. Ultrasonic processor model POWERSONIC 405 (to sonicate the sample solutions) and electronic balance (Sartorius-2474; d=0.01 mg) were used.

2.2 Reagents and Materials: Paracetamol (99.5 %, ZIM Laboratories, Nagpur, India), and Diclofenac sodium (99.8%, ZIM Laboratories, Nagpur, India) were used. Methanol, Ethyl acetate, Strong ammonia solution, fluorescent indicator F254 for thin layer chromatography, Carboxymethylcellulose Sodium, and Concentrated Hydrochloric Acid, were of analytical grade, Merck, Germany. Water used was deionised and double distilled for Chemical and Pharmaceutical applications.

3. PROCEDURE:

3.1Preparation of stationary phase: Bentonite was crushed using a mortar and milled by planetary ball mill to obtain small pieces, which have diameter less than 20 μm , Further, the bentonite powder is activated with chemical reaction by Suspending 50 g of bentonite in 100 ml of HCl (6 M) for 24 hours, to remove soluble oxides especially iron oxide. The magnetic stirrer was employed to mix the solution at 300 rpm and temperature 85°C. After that, the bentonite is washed several times using distilled water until the pH is neutral, and dried at 200 °C for 3 h, to obtained acid treated

Syrian Bentonite,. The yield chromatographic support named(S .BAW)

3.2 Preparation of TLC plates: For preparation of thin chromatographic layers, (10 g) of acid treated clay (acidic treated bentonite) was passed through a mesh vibrated sieves of size less than 20 μm , andthen it was mixed with (0.5 g) of fluorescence substance (F₂₅₄), then the mixture was added to 20 mL hot water containing (0.5 g) Carboxymethylcellulose Sodium as binder to obtain homogeneous slurry. The slurry was spread over glass plates (10×20 cm) by an CAMAG Hand Operated TLC Coater, to form uniform thin layer 0.25 mm thick. The plates were dried at 105 °C.

3.3 Mobile phase: Ethyl acetate: Methanol:ammonia solution (55:5:3)(v/v) were used for the development method as mobile phase.

3.4 Standard solutions: Stock solutionswere prepared by dissolving (2500 mg) of Paracetamol, and (1000 mg) of Diclofenac Sodium in 30 mL of methanol, then transferred into a 50 mL volumetric flask and the final volume was completed to 50 mL with the same solvent. Volumes 1, 2, 3, 4, 5,6,7 and 8 mL from the former solution were transferred into 10 mL volumetric flasks and completed to the mark with the same solvent methanol (these solutions contain: 5, 10 , 15 , 20 , 25,30, 35, and 40 mg. mL^{-1} , for Paracetamol , and 2 , 4 , 6 , 8, 10,12, 14 and 16 mg. mL^{-1} , for Diclofenac Sodium).

3.5 Sample preparation: (DICLOGESIC) and (DICLOCIN) Each tablet of DICLOGESIC contains (500 mg Paracetamol , and 50 mg Diclofenac Sodium), and each tablet of DICLOCIN contains (250 mg Paracetamol , and 50 mg Diclofenac Sodium). Twenty tablets were weighed and the average tablet weight determined (each tablet contains: 500 mg , or 250 ofParacetamol, and 50 mg ofDiclofenac Sodium). The tablets were finely powdered and a portion of powder equivalent to the weight of one tablet was dissolved in 20 mL methanol and vigorously shaken for a 20 min on a mechanical shaker, then filtrated and transferred into a 25 mL volumetric flask and the final volume was completed to 25 mL with

the same solvent. The solution for (DICLOGESIC tablet) contains: 20 mg/ml Paracetamol, and 2 mg/mlDiclofenac Sodium, and the solution for (DICLOCIN tablet) contains: 10 mg/ml Paracetamol, and 2 mg/ml Diclofenac Sodium).

4. PROCEDURE:

4.1 Chromatographic conditions: 1 μL of standard solutions were spotted on TLC glass plates (10 cm × 20 cm) pre-coated withacid treated bentonite (F₂₅₄ with 0.25 mm thickness). Mobile phase was used for development method, then the plates were dried at room temperature and quantification was carried out densitometrically at $\lambda = 250$ nm for Paracetamol, and $\lambda = 290$ nm for Diclofenac Sodium. This process was repeated five times for each concentration and calibration curves were obtained in the range 5-40 $\mu\text{g}/\text{spot}$ for Paracetamol, and in the range2-16 $\mu\text{g}/\text{spot}$ for Diclofenac Sodium.

4.2 Pharmaceutical formulations: DICLOGESIC tablets contains 500 mg Paracetamol and 50 mg Diclofenac Sodium. DICLOCIN tablets contains 250 mg Paracetamol , and 50 mg Diclofenac Sodium. 1 μL of solution of tablets content, were spotted on TLC glass plats for separation of (Paracetamol, and Diclofenac Sodium) and quantification was carried out densitometrically at $\lambda = 250$ nm for Paracetamol, and $\lambda = 290$ nm for Diclofenac Sodium, and simultaneous quantification for two substances was carried out densitometrically at $\lambda = 250$ nm. The concentrations were calculated from the mentioned standard curves.

5. RESULTS AND DISCUSSION

5.1 Specific Surface Area of Acid Treated Bentonite (Acid Treated Syrian Clay): Specific Surface Area of treated bentonite was determined by the adsorption of Methylene Blue; it is found that the surface areawas 91 m^2/g .

5.2 Chromatograms processing: The position of the spots from the mobile phase front on the chromatographic plate for different concentrations (5 to 40 $\mu\text{g}/\text{spot}$) of Paracetamol, and (2 to 16 $\mu\text{g}/\text{spot}$) of Diclofenac Sodium at $\lambda = 250$ nm was **Fig. 3**.

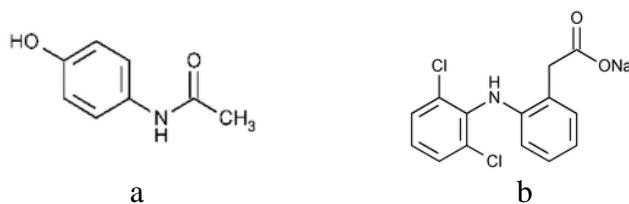


Figure 1. Chemical structure of a - Paracetamol , b - Diclofenac Sodium

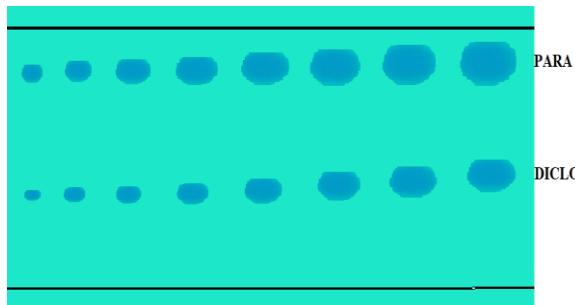


Fig. 3. TLC plate of standard mixtures of Paracetamol, and Diclofenac Sodium

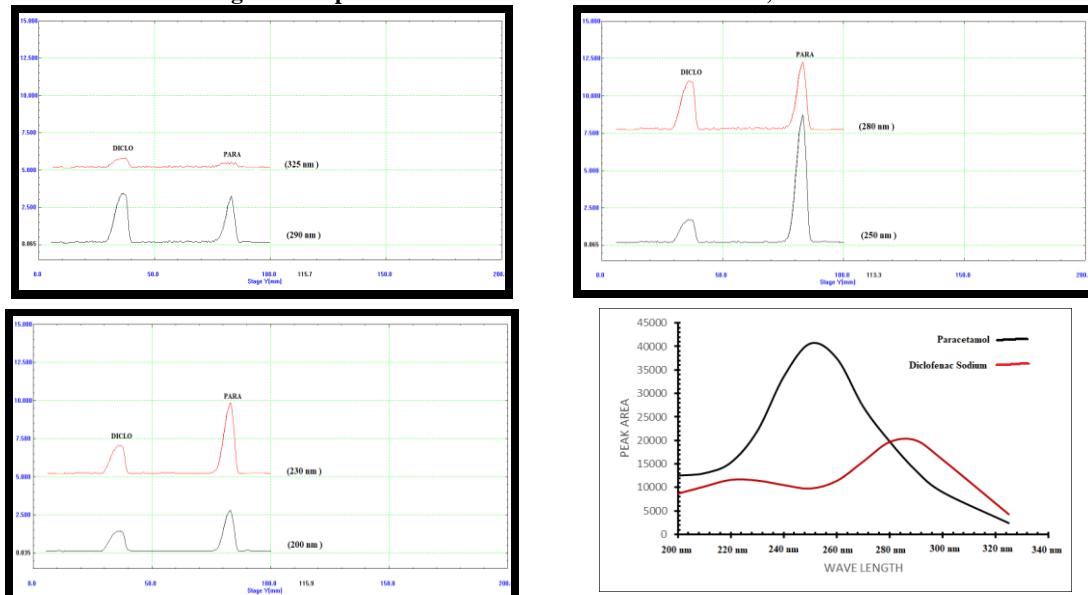


Fig.4 Chromatograms of mixture of Paracetamol, and Diclofenac Sodium at different wavelengths.

Fig. 5. Effect of wavelengths (λ) on peak areas of Paracetamol, and Diclofenac Sodium

TABEL 1: Analytical parameters of proposed method

Parameter	Paracetamol	Diclofenac Sodium
Linearity range, $\mu\text{g}/\text{spot}$	5- 40	2 - 16
Wavelength (nm)	250	290
Linear regression equation $y=bx+c$	$Y=829.48X+8330.3$	$Y=693.12X+424.93$
Correlation coefficient R^2	0.9959	0.9963
LOD ($\mu\text{g}/\text{spot}$)	0.0625	0.165
LOQ ($\mu\text{g}/\text{spot}$)	0.210	0.550
RSD%	2.00 % - 4.15%	2.48% - 4.97%

The chromatogram of mixture of Paracetamol, and Diclofenac Sodium (40 $\mu\text{g}/\text{spot}$ for Paracetamol, and 16 $\mu\text{g}/\text{spot}$ for Diclofenac Sodium) can be observed with two peaks at different wavelengths (λ) at 200 to 325 nm (Fig. 4). The first peak for Paracetamol increases to $\lambda = 250$ nm then decreases, and the second for Diclofenac Sodium increases to $\lambda = 290$ nm then decreases (Fig. 4),&(Fig. 5) . It is inferred from the Figs. 4, and 5 that the best wavelengths to determination of Paracetamol, and Diclofenac Sodium were 250 nm, and 290 nm respectively. The retardation factors (R_f) of Paracetamol, and Diclofenac Sodium were 0.84 , and 0.35 respectively.

Quantitative evaluation: The method being validated through precision, linearity and accuracy for the simultaneous determination of different standard mixtures of Paracetamol, and Diclofenac Sodium in the range of 5.0 to 40.0 $\mu\text{g}/\text{spot}$ for Paracetamol, and in the range of 2.0 to 16.0 $\mu\text{g}/\text{spot}$ for Diclofenac Sodium using $\lambda = 250$ nm , the results summarized in Table1.

Application: The results of the validation verify the suitability of the proposed analytical procedure for the identification and quantitative determination of Paracetamol, and Diclofenac Sodium in the mixture. Commercial product (that contained of the two studied Substance was analyzed in order to assign the values of their contents using $\lambda = 250$ for Paracetamol, and Diclofenac Sodium. The pharmaceutical formulation was selected for the study as the following:

Tablets: Each tablet of DICLOGESIC contains (500 mg Paracetamol , and 50 mg Diclofenac Sodium) , and each tablet of DICLOCIN contains (250 mg Paracetamol , and 50 mg Diclofenac Sodium).

The results are in good agreement with the results of HPLC. It can be observed that the difference between the results by HPLC and the found values by this method are less than 5 % in and the relative standard deviation is not exceeding ± 5 %. The proposed method has been successfully applied to determine Paracetamol, and Diclofenac Sodium in pharmaceutical formulations.

CONCLUSION

In the preceding method, determination of Paracetamol, and Diclofenac Sodium in pure form and Tablets pharmaceutical formulations by TLCdensitometric method using acid treated Bentonite and mobile phase: Ethyl acetate: Methanol: Strong ammonia solution (55:5:3) (v/v) has been applied.

Quantification was carried out densitometrically at $\lambda = 250$ nm for Paracetamol, and

$\lambda = 290$ nm for Diclofenac Sodium, and simultaneous Quantification for two substances was carried out densitometrically at $\lambda = 250$ nm. The retardation factors (R_f) of Paracetamol, and Diclofenac Sodium were 0.84, and 0.35, respectively.

Calibration curves were obtained in the range of 5.0- 40.0 $\mu\text{g}/\text{spot}$ for Paracetamol, and 2.0 - 16.0 $\mu\text{g}/\text{spot}$ for Diclofenac Sodium (at $\lambda = 250$ nm) for simultaneous determination of two substances in standard solutions, and Tablets pharmaceutical formulations.

REFERENCES

- 1- Ramadan A.A., Antakli S., Sakur A.A., Using Grafting Aleppo Bentonite in Gas Chromatographic Analysis of Hydrocarbon Compounds C5 – C12 Some Aromatic Compounds and Alcohols, *Res. J. of Aleppo Univ.*,1994,17, 142.
- 2- Ramadan A.A., Antakli S., Sakur A.A., Effect of chemical grafting on the surface structure of porous bentonite as a support in gas chromatography, *Qatar Univ. Sci. J.*, 1994, 14 (C): 175-177.
- 3- Ramadan A.A., Antakli S., Sakur A.A., Gas Chromatographic Analysis of Some Normal Alcohols Using Column of Grafted Aleppo Bentonite, *Res. J. of Aleppo Univ.*,1995,19, 131.
- 4- Sakur A.A., Gas chromatographic analysis using Aleppo bentonite columns deactivated by grafting, *M. Sc. Thesis in Chem.*, Aleppo University, Syria, 1995.
- 5- F. BERGAYA, G. LAGALY, General introduction: Clays, clays minerals, and clay science, Cap.1 In: Bergaya F, Theng BKG, Lagaly G, editors. *Handbook of Clay Science*, Elsevier, Amsterdam, ,2006, p. 1.

- 6- Ramadan A.A., Antakli S., Sakur A.A., Characterization of the Grafted Bentonite Supports by Gas Chromatography, Asian Journal of Chemistry, 1999, 11 (4), 1343.
- 7- Sakur A.A., Studying of some chromatographic supports prepared from bentonite and using it in chromatographic analysis , Ph. D. Thesis in Chem., Aleppo University, Syria, 2000.
- 8- Ramadan A.A., Sakur A.A., and Lahmek M., Separation and Determination A Mixture of Cyclic and Aromatic Compounds Using Column of Bentonite Grafted With Silicone SE-52 by Gas Chromatography,Res. J. of Aleppo Univ., Syria, 2003, 39, 13-26.
- 9- Sakur A.A., Preparation of New Chromatographic Support from Bentonite Grafted by Silicone OV-101, Research Journal of Aleppo Univ., Medical Sciences Series, 2004, 49.
- 10- Lahmek M., Sakur A.A., Ramadan A.A., Modification of Algerian bentonite and using it as support in gas chromatography, Asian Journal of Chemistry, 2004 16 (1), 89.
- 11- Abdul Ghafour O., Thin layer chromatography using Aleppo bentonite.,M. Sc. Thesis in Chem., Aleppo University, Syria, 1998.
- 12- Ramadan A.A., Bodakji A., Mahmoud I., TLC-densitometric determination of vitamins B₁, B₆ and B₁₂ in pure and pharmaceutical formulations using treated aleppobentonite. *Asian J Chem*, 2010; 22(4), 3283-3291.
- 13- Ramadan A.A., Al-Akraa H., Maktabi M., TLC Synchronous determination of valsartan and hydrochlorothiazide in pure form and in tablets using butyl-modified aleppobentonite, *Int J Pharm PharmSci*, 2013; 5 (3): 762-769.
- 14- Renger B., Planar J. , Chromatogr, 1999, 12, 58 .
- 15- S.C. Seetman, editor. Martindale: The Complete Drug Reference. 37th Ed. London: The Pharmaceutical Press: London; 2011, 112. p. 1499.
- 16- Osol A., "Remington's Pharmaceutical Sciences". In *Analgesics and Antipyretics*. Philadelphia College of Pharmacy, Easton, PA, 1980, pp. 1056,1076-77.
- 17- Indian Pharmacopoeia. 6th ed. Government of India, Ministry of Health and Family Welfare. Ghaziabad, India: The Indian Pharmacopoeia Commission. 2010; Vol 3: 1859-1862.
- 18- British Pharmacopoeia. The Department of Health, Grate Britain: Medicines and Healthcare products Regulatory Agency (MHRA) 2010; Vol 3: 1610, 2611, 2976.
- 19- The United States Pharmacopoeia USP30-NF25. Asian ed., Rockville, MD, Washington, D.C.: The USP Convention 2005: 1266-67, 1922-23, 1926.
- 20- Behera S, Ghanty S, Ahmad F, Santra S, Banerjee S: UV-visible spectrophotometric method development and validation of assay of Paracetamol tablet formulation. *Journal of Analytical & Bioanalytical Techniques* 2012; 3(6): 1-6.
- 21- Bhimavarapu R, Chitra KP, Meda H, Kanikanti D, Anne M, Gowthami N: Forced degradation study of Paracetamol in tablet formulation using RP-HPLC. *Bulletin of Pharmaceutical Research* 2011; 1(3): 7-13.
- 22- Indian Pharmacopoeia. 6th ed. Government of India, Ministry of Health and Family Welfare. Ghaziabad, India: The Indian Pharmacopoeia Commission 2010; Vol 3: 806-809.
- 23- British Pharmacopoeia. The Department of Health, Grate Britain: Medicines and Healthcare products Regulatory Agency (MHRA) 2010; Vol 2: 1612.
- 24- Khaskheli AR, Sirajuddin, Abro K, Sherazi STH, Afridi HI, Mahesar SA, Saeed M: Simpler and faster spectrophotometric determination of diclofenac sodium in tablets, serum and urine samples. *Pakistan Journal of Analytical and Environmental Chemistry* 2009; 10(1 & 2): 53-58.
- 25- Lala LG, D'mello PM, Naik SR: HPTLC determination of diclofenac sodium from serum. *Journal of Pharmaceutical and Biomedical Analysis* 2002; 29(3): 539-544.
- 26-Qabas Naji Rashid , MohsinHamzaBakir , Shirwan Omar Baban , Spectrophotometric determination of Diclofenac Sodium in pure form and in the pharmaceutical preparations, *Tikrit Journal of Pure Science* , 21 (3) ,ISSN: 1813 – 1662 (Print) , (2016) .

- 27- KaaleE, NyamweruB C, ManyangaV, Chambuso M, Layloff T, The Development and Validation of a Thin Layer Chromatography Densitometry Method for the Analysis of Diclofenac Sodium Tablets, *PharmaceuticaAnalyticaActa* , Volume 4 , Issue 1, (2013), 1- 4.
- 28- DigheV.V., MenonS., Sane R.T., TambeH N., Simultaneous determination of diclofenac sodium and paracetamol in a pharmaceutical preparation and in bulk drug powder by high-performance thin-layer chromatography , *JPC - Journal of Planar Chromatography - Modern TLC* , December (2006) , 19(112):443-448.
- 29- MahmoodA.M., RP-HPLC Method for Simultaneous Estimation of Diclofenac sodium,Chlorphenaramine malate and Paracetamol in Tablets , *Kerbala journal of pharmaceutical sciences* , No. (12) , (2017) .
- 30- KulkarniM. B., DangeP. B., WalodeS. G., Stability indicating thin-layer chromatographic determination of chlorzoxazone, diclofenac sodium and paracetamol as bulk drug: Application to forced degradation study , *Der Pharmacia Sinica* ,(2012) , 3(6): 643-652 .
- 31- SebaiyM. M., MattarA.A., H-Point Assay Method for Simultaneous Determination of Paracetamol and Diclofenac Sodium in Their Combined Pharmaceutical Dosage Forms , *Open Journal of Biotechnology & Bioengineering Research* , (2020), 4(1), 001-005.
- 32- PhaneemdraD., NagamalleswariG., Quantitative Analysis Of Paracetamol And Diclofenac In Combined Dosage Form By First Derivative And Simultaneous Equation Method In Application To The Determination Of Dissolution Study, *International Journal Of Pharmaceutical Sciences And Research* , (2012) ;. 3(10): 3871-3876.
- 33- Jana K., Adhikari L., Moitra S.K , Behera A., Analysis Of Multicomponent Drug Formulations (Diclofenac And Paracetamol) , *Asian Journal Of Pharmaceutical And Clinical Research*, 4(2), (2011), 4143.
- 34- Sharma R., Pathodiya G., Mishra G.P., JitendraSainy , Spectrophotometric Methods for Simultaneous Estimation of Paracetamol and Diclofenac Sodium in Combined Dosage Form by Application of Hydrotropic Solubilization , *Journal of Pharmaceutical Sciences and Research* ,2 (12), (2010),821-826 .
- 35- Mohammad A., Sharma S., Separation Of Co-Existing Paracetamol And Diclofenac Sodium On Silica Gel 'H' Layers Using Surfactant Mediated Mobile Phases: Identification Of Diclofenac Sodium From Human Urine , *Farmacia*, (2009), Vol. 57, 2 .
- 36- Patel K.M., Parmar M , Patel R., Simultaneous Estimation Of Paracetamol, Diclofenac Sodium And Dicyclomine Hydrochloride In Their Tablet Dosage Form Using Derivatization Method , *International Journal Of Pharmaceutical Research And Bio-Science* , (2019); Volume 8(3): 24-38.
- 37- SebaiyM.M., MattarA A, Spectrum Subtraction Method for Simultaneous Determination of Paracetamol and Diclofenac sodium in their Combined Pharmaceutical Dosage Forms , *Archives of Organic and Inorganic Chemical Sciences*, Volume 4, Issue 3,(2020) .
- 38- ChhalotiyaU. K, Patel D B, Shah D A, Mehta F A, Bhatt K K, Simultaneous Estimation of ChlorzoxazoneParacetamol Famotidine and Diclofenac Potassium in Their Combined Dosage Form by Thin Layer Chromatography , *Journal of Pharmaceutical and Pharmacological Sciences* , 2017(3).
- 39- Ramzia I, El-Bagary , Ehab F El-Kady , Ahmed A Al-Matari , Simultaneous Spectrophotometric Determination Of Diclofenac Sodium, Paracetamol, And Chlorzoxazone In Ternary Mixture Using Chemometric And Artificial Neural Networks Techniques , *Asian Journal Of Pharmaceutical And Clinical Research*, (2017) , 10(11), 225 – 230 .
- 40- Mohite V. I., Potawale S.E., Gabhe S.Y., Development And Validation Of Hptlc Method For Simultaneous Estimation Of Paracetamol, Diclofenac Potassium And Chlorzoxazone In Bulk Drug And Tablet Dosage Form , *International Journal Of Pharmacy And Pharmaceutical Sciences*,(2013), 5(2),432 – 435.

- 41- RajuT. G., VinukondaA., AkkiR., GayatriramyaM., Gupta S.K., NaikV.V., Simultaneous Estimation Of Diclofenac Sodium And Rabeprazole In Combined Dosage Form , International Journal Of Research In Pharmacy And Chemistry, (2012), 2(3), ISSN: 2231-2781.
- 42- MhaskeA. J., GawadJ.B., PatilV.K., Simultaneous Estimation Of Diclofenac Sodium And Famotidine By Reversed-Phase Thin Layer Liquid Chromatography / Densitometry Method In Bulk And In Tablet Dosage Form, International Journal Of Pharmaceutical Sciences And Research , (2013), Sr No: 29, Page No: 2677-2682.
- 43- Jawed A., Pasha TY, Padaria M. , Shah B. , Mansuri N., PrajapatiK., Spectrophotometric Methods for Simultaneous Estimation of Tramadol Hydrochloride and Diclofenac Sodium in Combined Dosage Form , Research Journal of Pharmacy and Technology, Volume : 6, Issue : 3, (2013)