

EFFECTS OF *hERG* K⁺ CHANNEL BEYOND PROLONGED QT SYNDROME

Arghya Bhattacharya¹, Sahim Mondal², Meghna Santra², Bikram Dhara³, Shibam Kundagrami⁴, Vinay Sai Lankipalli^{5*}, Soumik Bhattacharjee⁶, Sumit Nandi⁶, Debraj Mukhopadhyay⁷, Dattatreya Mukherjee⁸

¹Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Howrah, India

²NSHM Knowledge Campus, Kolkata Group of Institutions, Kolkata

³Research Scholar, Department of Microbiology, St Xavier's College [Autonomous], Kolkata, India

⁴North Bengal Medical College and Hospital, Darjeeling, India

⁵Mahathi College of Pharmacy, Andhra Pradesh, India

⁶Dr. B.C. Roy College of Pharmacy & A.H.S, Durgapur

⁷Department of Public Health, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India

⁸Clinical Intern, First Affiliated Hospital of Jinan University, P.R China

*Corresponding author E-mail id: lankipallivinaysai@gmail.com

ARTICLE INFO

ABSTRACT

Key words:

hERG-K+ Channel, QT Interval, Torsade de points, Cardiology, Pharmacology

Access this article online
Website:

<https://www.jgtps.com/>
Quick Response Code:

The human ether-a-go-go-related gene (hERG) potassium channel assumes the focal part for directing cardiac sensitivity; heart activity like repolarization, adequately controlling the QT time interval electrocardiogram, that is communicated within our heart, different cerebrum areas, endocrine cells, smooth muscle cells, and a vast range of growth cell line isolates. Procured adversity or benefits changing in hERG could cause perilous "long" or "short" QT conditions (SQTS), independently & the unusual weakness of hERG to impede by a various extent of medications underlies an acquired LQTS, an issue that slopes individuals to dangerous cardiovascular arrhythmias. Interestingly, a decrease in hERG flows because of either hereditary deformities or unfriendly drug impacts can promote obtained long QT disorders described by activity likely prolongation, lengthening of the QT interval on a superficial level of ECG and an expanded danger for "torsade de points" arrhythmias & unexpected death are two side effects of the non-antiarrhythmic compound have incited the recall of certain popular drugs. Statistics on the working of hERG channel restraint give critical experiences into the sub-atomic elements that decide state voltage, and use-dependency of hERG current block. Regardless, creating evidence traps hERG in an assortment of physiological and over-the-top cycles. Propels in understanding the underlying premise of hERG gating, its traffic to the cell surface, and the atomic architecture engaged with drug-block of hERG, are giving the establishment to reasonable treatment and counteraction of hERG related long QT disorder. This survey sums up the ebb and flows information on hERG capacity and brokenness, and the spaces of progressing research. Here we discuss the current knowledge of other effects of the hERG

potassium channel beyond prolonged QT syndrome.

INTRODUCTION

The hERG (human eag-related quality) is an individual from the eag (ether-a-go-go) K⁺ channel group. Because of its role in intrinsically and pharmacologically related arrhythmias, the potassium channel was determined by hERG and attracted a lot of attention [1, 2]. These hERG channels, associated with the cardiac system and nervous system, lie behind one type of the long QT disorder, LQT2, a hereditary condition causing familial cardiovascular arrhythmia and unexpected passing. In any case, its underlying disclosure was provoked not via heart peculiarities but rather by a neurologic aggregate in *Drosophila*, where the change of the homologous Eag quality prompts fitful leg developments [3,4]. In the same manner as the rest of the voltage-subordinate potassium channels, each hERG structural object consists of about six films. Among these, four structures form a tetramer with a focal particle impulse transmission opening.

HERG displays two particular and physiologically huge gating attributes: Fast inactivation and slow deactivation. Fast inactivation signifies that as the channel opens by depolarizing the cell layer, it quickly goes into a non-conducting (inactive) state, allowing hardly any current outside the cell. Later as the film recovers to its normal resting potential of around -80 mV, the channel appears to remember its conformational processes and goes through the open state before returning to its closed state. During a voltage brace experiment, the HERG channel's re-visitation of the shut state is referred to as the course of deactivation and is highly delayed, resulting in a huge internal "tail" K⁺ current. This sluggish pace of HERG channel deactivation assumes a significant part in heart electrical sensitivity by overseeing the length of the activity potential. In this point of view, we review the existing

proof for hERG articulation and capacity in different tissues, a significant number of which are connected to infection. Whether or not its jobs are causal, this study suggests that hERG has healing effects beyond the cardiovascular framework.

Effects of hERG (K⁺) channel on Cardiac Electrophysiological activity-

Drug safety testing for cardiovascular tissues requires monitoring of heart muscle functions obtained from normal adult humans, however, this tissue is not easy to have present for research [5].

In vivo, tissues used for in vitro model testing are a permanent line of human cultured cells, human embryonic kidney cells (HEK-293), which have low levels of membrane-bound rectifier potassium channels (I_{kr}) [5].

I_{kr} is a product of defects in the hERG mutation. The alpha subunit of a potassium channel is computed through the human ether-a-go-go-related gene (hERG). Such ion channel aids cardiac electrophysiology by mediating the repolarization of I_{kr} flow in the cardiac action potential, which facilitates heart rhythm synchronization [6].

Inhibition of the channel fails to conduct impulse across the cell membrane, either by effects of certain drugs or because of genetic mutations. This is likely to cause a lethal disorder known as **Long QT Syndrome** [6].

Modification of HEK-293 cells was done by transferring the infected factor within the hERG gene, thus ensuing exposure of the K⁺ channels and being fused in the cell membrane [5].

The hERG-gene transfected cells have also been used for testing of effects of erythromycin on the electrophysiology of the cells, with concentrations varying from 0.001mM to 0.10 mM [5]. A significant blockage of ion currents interceded by the potassium channel I_{kr}

was observed [6]. More than 50 transformations in hERG have been connected to the innate Long-QT disorder

Long-QT Syndrome-

Long-QT syndrome is an orphan hereditary disease that is allied with fatal cardiac arrhythmias [7]. The arrhythmia triggers syncopal episodes, seizures, and in severe cases even sudden death [8, 9].

QT prolongation can be acquired or inherited [10]. The comparison of the normal QT interval and long QT interval is shown in **Fig1**. The most common cause of acquired long QT is certain drugs that can extend the QT interval in otherwise healthy people. Antibiotics such as erythromycin and azithromycin, antifungal drugs, diuretics that may cause electrolyte imbalance, anti-arrhythmic medications, anti-depressants and antipsychotics, and several anti-emetic medications are among them [10,11]. The most prevalent reason for drug cessation is drug-induced QT prolongation. One of the central causes of QT prolongation is speculated as blockage of hERG potassium channels in cardiac myocytes. More than 17 genes have been linked to LQTS thus far, and hundreds of mutations have been identified within these genes. *In vivo*, 14 ion channels cause an adverse impact of QT prolongation and thus its effects on general human health [10, 12]. This has provided information on fundamental mechanisms underlying human cardiac electrophysiology and consideration for the factors that regulate the critical plateau and repolarisation phases in the human ventricular action potential. This gives a clear idea about the regulation of both potassium and sodium channels during the ventricular repolarisation period of electric activity [7].

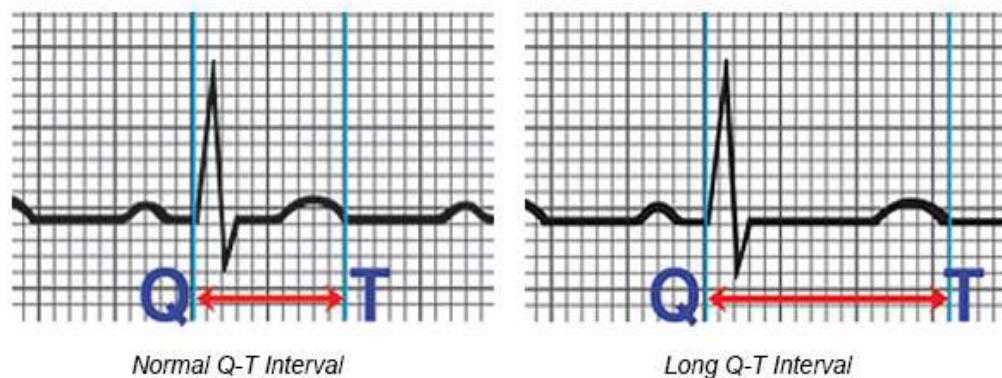
There are two malignant subtypes of LQTS namely-

JLNS (Jervell and Lange-Nielsen syndrome) – An uncommon hereditary ailment marked by inborn deafness occurring along with abnormalities affecting the cardiac electrophysiology [12, 13].

Timothy Syndrome (TS or LQT8) – Also known as long QT syndrome type 8. It is a multisystem genetic disorder affecting mainly the heart. It can, however, influence a variety of other physiological systems, including the immune system, nervous system, fingers, toes and teeth [14]

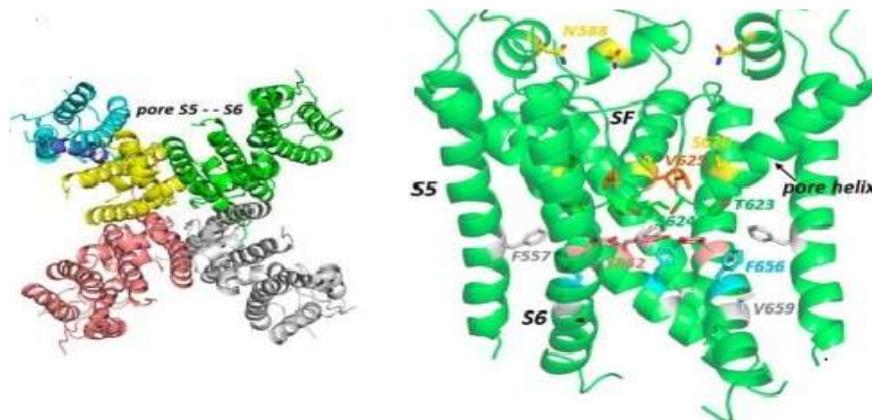
Fainting, seizures.

Ventricular fibrillation – A type of arrhythmia that starts from the ventricles due to high-frequency, disorganized excitation of ventricular myocardium [15,16].


Torsade's de pointes - A type of polymorphic ventricular tachycardia with a unique pattern, distinguished by quick and irregular QRS complexes, which cause the waves around an ECG baseline to appear twisted, hence the name "twisting of the points" [16].

Sudden death.

Symptomatic LQTS patients, if left without any treatment have a high mortality rate of around 21% within the first year of syncopation. The mortality rate could be lowered to nearly 1% with a proper 15-year follow-up treatment.


hERG channel structural module-

The constitutively formed hERG potassium channel has 4 similar alpha subunits making up the channel's pore in the cell membrane. Each of these subunits is made up of six periplasmic α -helices which are presented in **Fig2**. Every third position on the fourth helix has a positively charged lysine/arginine AA residue, which is considered to operate as a voltage-sensitive sensor, allowing the channel to respond to voltage changes by modifying the conformations of conducting and non-conducting gates. [17].

Fig 1 – Comparison between normal Q-T interval and long Q-T interval

Fig 1 – Comparison between normal Q-T interval and long Q-T interval

Fig2 – Constitutive structure of hERG

Between the fifth and sixth helices, there is an extracellular loop termed as turret or "pore loop" that starts and finishes outside of the cell but coils into the cell membrane which is showed in **Fig2**. Each pore loop in one channel of the hERG subunits faces the ion-conducting pore and is adjacent to homologous convolutes of the other three subunits, forming a selectively filter-area of the channel pore. [6]. Although the entire crystalline arrangement for hERG is not yet understood, electron microscopy has revealed an appropriate atomic structure for detailed studies.

Individual roles of hERG K⁺ channel:-
hERG K⁺ Channel in Heart muscles:-

Repolarization of heart ventricular cardiac muscle cells is mostly directed by the flow of potassium ions outside the cell. Perhaps the main current functions to postpone rectifier potassium current, IK, that has quickly and gradually actuating parts (IKr and IKs) [18]. Actuation of the fast part of the postponed rectifier potassium current, IKr, ends the level stage and starts repolarization of the heart activity potential. hERG encrypts the hidden Ikr of voltage-gated potassium channel alpha subunits. [19, 20, 21]. The HERG potassium channels are homologous tetramers of an indistinguishable pericytoplasmic membrane, alongside a collection of constructive costs limited inside the S4

place filling in the form of voltage sensors. HERG is an essential objective for the Pharmacological administration of arrhythmias with class III arrhythmias specialists [22, 23]. Obstruction in hERG flows affects protraction of the cardiovascular activity potential, which might create a valuable class III antiarrhythmic impact. Unreasonable decrease of HERG flows because of changes in hERG or through bar produces chromosome-7-connected intrinsic long QT condition (LQTS-2) and procured long QT disorder, individually. The two types of LQTS are related to postponed heart repolarization, delayed electrocardiographic QT stretches, and a danger for the improvement of ventricular “torsade’s de pointes” arrhythmias and unexpected cardiovascular passing. hERG channels are restrained by an assortment of non-antiarrhythmic compounds. This unwanted secondary outcome is presently viewed as a huge obstacle to overcome for the advancement of innovative and more secure medications and has constrained the expulsion of a few medications. Notwithstanding LQTS, cardiomyocytes apoptosis has been accounted for the ensuing pharmacological hERG K⁺ channel barricade [24].

hERG K⁺ channels in Oncology:-

Just as motion in the nervous system of mammals, developing proof displays deviations in film potential happen in the course of cell separation and cell cycle movement [25,26]. In this manner, an ailment related to dysregulated cell duplication. The original review embroiling hERG in oncogenesis used both Northern smear tests and fix clasps to distinguish practical articulation of divert in 17 growth types got from different cell ancestries. Since relating non-obsessive tissues for these cancers needed articulation of hERG, the creators recommended that the depolarization coming about because of channel over-

articulation may give a particular benefit for endurance in hypoxic conditions. An example in support of this is Imatinib (a popular channel blocker) which diminishes VEGF emission in leukemic cells communicating hERG that shows restrain in the development of endothelial vasculature which upholds growth feasibility [27]. Extra analyses concentrating on pharmacological hindrance by E4031 (a sort III antiarrhythmic and specific channel blocker) propose that hERG articulation might work with cell relocation in assorted hematopoietic neoplasms through an integrin-related flagging pathway [28,29,30]. Moreover, hERG has additionally been recognized in microvesicles expelled by leukemic cells. The microvesicles up-control hERG articulation in anti-cancerous cells once fused in the cell layer, a criticism component that consequently applies pleiotropic impacts via vesicular dealing [30].

In certain malignant growth cell line isolates, the pharmacological cross-reactivity of hERG and different other channels represent complicated translations of their capacities. Such is shown through tests utilizing MCF-7 boom malignant growth cells, where the use of the particular inhibitor E4031 has distinguished an unmistakable job for hERG in work guidelines which is discrete from the expansion interceded by the firmly related human ether-a-go-go quality (hERG) potassium channel. Such overgrowing influences are impeded by using astemizole, renowned to repress both hARG and hERG, whilst caspase-3 established apoptosis is probably started through the likewise indistinct effects of arsenic trioxide. Taken along with past proof that partners hereditarily connected LQTS with transformations in something like eleven qualities, together with other potassium, calcium, and sodium channels [31,32], this information recommends intensified impacts upon

hERG, and various particle conducting proteins probably won't be effectively isolated by nonselective modulators. To be sure, the bar of various classes of particle channels might effectively affect growth development, as proposed by prostate disease tests during which amiodarone (a K⁺, Ca2⁺, and Na⁺ channel blocker) is far more intense than intensifies that block just two particle channel classes [33]. Moreover, everyday objects, for eg, berberine are ideal to have impacts on diverse particle motions, yet additionally on different oncogenic pathways, in this manner convoluting the elucidation of their agonist transitory action in hERG-communicating AML cells. Also, hERG capacities in a single tissue might be related to various directs in others. For sure, in medulloblastomas comparative work guideline, as examined stated previously, has been connected to the EAG2 channel instead of hERG [34]. Alternately, the particular inhibitors E4031 and WAY have been displayed to intervene apoptotic and hostile to uncontrolled cell growth impacts in leukemia, impacts that seem free of hERG in different cancers. Nonetheless, considering the non-particular inhibitor ranolazine (working to block voltage-gated sodium channels just as hERG) additionally hinders leukemia proliferation, the impacts of impeding the different flow of ions might become tissue-explicit.

The specific growth regulation of cells absconds related with hERG articulation may likewise change amid tumors of various tissue beginning. Tests in gastric and ovarian carcinomas recommend that the channel work is related to S-stage change or gathering, whereas in malignant growths in endometrium action gives off an impression of being connected with inhabitance of the G2/M stage[35]. Cell cycle subordinate examples of channel articulation increase extra intricacy to hERG's part in SH-SY5Y

neuroblastoma cells. Besides, it stays muddled if hERG articulation in destructive cells (or sensory function problems, as examined underneath) addresses a negative result of common pathologic cycles like irritation. Proof for the tweak of hERG articulation by irritation incorporates down-guideline keeping ceramide-prompted TNF- α flagging [36], and variations after pro-inflammatory arsenic or mercury treatment. Similarly, information from leukemia recommends that hERG articulation might be actuated in a portion subordinate way by chemokine SDF-1a, a basically dynamic stromal flagging element. Just as being downstream of different signs, hERG articulation may be correspondingly directed with different growth biological markers like the hERG channel [35,34], TNFR1, or CXCR4. Considering these instruments, the acceptance of aggravation-related qualities in schizophrenia and epilepsy recommends the likelihood that channel articulation may likewise be instigated in nervous system ailments as an auxiliary outcome of tissue harm in the sensory coordination.

Rather than the models mentioned before, where the shortfall of diversion in typical tissues recommends its demeanor may fill in as a biomarker for malignant growth, the statement of hERG in certain cancers might mirror a non-pathogenic job. As an example, prolactin discharge in adenomas got from the pituitary organ is reliant upon hERG articulation [37]. There is in like manner confirmation that the channel may not reliably intervene harmful development itself but to the physiological response to disorder. For example, the hERG's murine homolog is directed upwards into the skeletal muscles of mice whose portability is decreased because of squandering and idleness following growth infusion[38]. This up-guideline consequently seems to actuate solid decay by enacting the ubiquitin-proteasome framework [38].

hERG K⁺ focuses on Intestinal secretory, and procreative frameworks:

Electrically coupled clearance is also required for secretory and perceptual structures of the heart, mammalian stomach. Comparison of cardiovascular repolarization perpetuates employment for hERG in these structures. Certainly, Immunohistochemical and pharmacological information differs from the flow of practical hERG signals in longitudinal smooth muscle and intestinal neurons of the human small gastrointestinal tract [39]. These results are similar to previous studies with the action of hERG homologues. on the relevant phasic clearance in rat gut, suggesting that this job was saved by progress. [40]. Furthermore, the pH response of the channel may provide a subatomic connection to the management of electrical movement over and done with the acidity of the gastric lumen. Channel action also clarifies the spasms and loosening produced by anti-toxins, for example, erythromycin, a known inhibitor of hERG.. [41].

Rodents ERG channels are additionally specialized in the kidney, where they show different epithelial boundaries conferring to the nephron part. At this time, channel capacity can be linked to capacity guidance and osmotic equilibrium through sodium transport. ERG appears in the pancreas of both humans and mice and useful flux are separated into alpha and beta key cells. Under low glucose conditions, the pharmacological risks in the diverticulum of the colon help to regulate transmembrane calcium motility by increasing glucose and arginine-induced insulin clearance and inhibiting glucagon discharge. [42,43]. In mice, uterine contractions in early pregnancy are likely to be enhanced or suppressed using the non-natural stimulating substance or ERG inhibitors. [44]. Nonetheless, this

motion stops during subsequent pregnancies, during which time the other voltage-gated potassium channels in the Kv7 family take over. Cow-like homozygous males of hERG are exposed to rhythmic inhibitors equally directly in the perceptual framework, Growth trends of the epididymis as inhibitors such as haloperidol, cisapride, E4031 increase patterns of the epididymis that craftsmanship with the portion of semen [45]. Here under certain conditions, the channel directs extracellular calcium flow, as the movement is not delicate to tapsigargin management. The development of mice in epididymal parasitization was compared with that of the potassium channel blocker sibutramine, even though whether this is because of the action of the rodent ERG channel stays indistinct[46].

hERG K⁺ channel in Drug development:-

As well as directing LQTS in grown-ups, hERG, like other potassium channels, seems to play a significant part in being developed. Information got from mutational examinations of an Arabian family with incessant unnatural birth cycles proposes that homozygous hogwash transformations in the channel might be related to early-stage lethality[47]. Physical examination based on this genetic study reveals the combined deterioration of the herg record and new arrhythmias that may be part of the recurrent fetal malignancy. [47].

hERG-resistant drugs can activate undeveloped ischemia by weakening the heart rate [48]. This destructive impact is enhanced when the blood stream is re-established because of the age of receptive oxygen species (ROS), which can prompt formative abnormalities[48], for example, congenital fissure deserts or ventricular deformities seen in rodent models. Comparative teratogenic impacts have been accounted for different meds counting dofetilide, phenytoin,

erythromycin, almokalant, cisapride, and astemizole [48,49]. Comparable teratogenic effects have been attributed to phenytoin, cisapride, astemizole, almocalant, dofetilide, erythromycin in addition to various drugs. Furthermore, progesterone has been shown to modulate group collapse in Golgi and ER by regulating intracellular cholesterol homeostasis, providing potential avenues for the risk of arrhythmia in late Gravid.

Clinical Therapeutic Implications:-
Detection of hERG K⁺ blockers manifestation in malignancy cells: -
hERG can be used as a signal of prospective growth depending on their behaviour in the classification of cancer cells and there absence from most malignant anthropometric tissues. Precisely, HERG specializes in endometrial infection at mRNA (compassion = 67%; n = 18) and protein level (compassion = 82%; n = 18). However, only 18% (n = 11) of benign endometrial examples exhibit hERG mRNA or protein. In colon carcinoma, The hERG mRNA setup is a sharper and more clear indicator of loss (100 percent response and explanations; n = 23) than the mRNA of the growth marker CEA (compassion = 94.4%; n = 18), CK19 (compassion=77.8%; n=18), or CK20 (compassion=94.4%; n=18) [50]. Immunohistochemical discoloration for the hERG protein reached perception and specificity comparable to that of the hERG mRNA [50]. Additional approval is needed in bigger patient inhabitants.

Analytical importance of hERG K⁺ channel appearance in tumors cells:-
The predictive worth of hERG vocalization in cancer of certain soft tissues. Among the effects of acute myeloid leukaemia (AML), hERG K⁺ channel expression is correlated with a reduction in backsliding free and inverse normal endurance time and in patients with hERG-negative AML [51]. Patients with mobile carcinoma of

the throat exhibit similarly dull endurance once hERG is well-known. Nevertheless, hERG K⁺ channel expression in this review is not only associated with infiltration, proliferation, or cancer grade. In gastric illness cells, marks of hERG verbalization stay decidedly related to malignant growth de-division and TNM step. In accumulation, an increase in growth was observed in mice after infusion of gastrointestinal cells. Distillation of syndrome cells that were pretreated with hERG siRNA essentially weak tumor origin[52], affirming the neurotic meaning of hERG in cancer development and recommending an expected novel objective in anticancer treatment. In colonic gland carcinoma, there is a large association between hERG potassium channel expression and infiltration or dispersal. hERG isn't identified in typical duodenal mucosa (0%; n=60) and is rarely seen in adenomas (9%; n=11). Interestingly, significant hERG was originate in patients with non-metastatic adenocarcinoma (75%; n=52) and metastatic adenocarcinoma (100 percent; n=8), by the most obvious discoloration found in hepatic and peritoneal metastasis [53].

What is Antineoplastic rehabilitation: -

Doxazosin, the α 1-adrenoceptor blocker in cardiovascular therapy, is a setup management option in BPH. Its adjuvant efficacy has been attributed to the appointment of apoptosis in hyperplastic and malignant prostate cells. [54]. Furthermore, hERG-helpful malignant growth cells have been accounted for designate especially weak to paclitaxel, and hydroxycamptothecin, chemotherapeutics vincristine [55]. The minimal effects of vincristine, paclitaxel, and hydroxycamptothecin on herbicide pathways have yet to be investigated. The most attractive approach to antineoplastic treatment

focusing on hERG channels is the instantaneous bar of K⁺ channels, which is based on providing anti-proliferative and prophylactic results that reduce cancer growth and infiltration. [55]. Preliminary evidence of the idea focuses on the confirmed response of gastric malignant growth cell proliferation by the hERG potassium channel blocker cisapride.[56] Effectiveness is required in vivo testing of chemotherapeutic belongings and potential cardiovascular consequences of herbicide inhibitors.

Antagonistic impacts and restrictions of antineoplastic cure made on hERG existing inhibitor:-

The proarrhythmic and cardiotoxic risks of hERG inhibitors involve careful evaluation when spread over these formulations in neoplastic management. Critical management of malignant growth by group rooks can affect cardiac myocytes, accomplishing apoptosis and cardiovascular breakdown. Moreover, utilization of hERG enemies might incite QT prolongation and ventricular tachycardia. Even though disease treatment, for the most part, happens in dangerous circumstances, and at times potential heart harm is acknowledged (for example during utilization of anthracyclines), ideal concealment of these occasions will be required. To forestall proarrhythmic aftereffects, transient medication application might be adequate to instigate apoptosis in cancer cells with negligible impacts on heart electrophysiology. ECG checking ought to be achieved for the duration of use of the medication. Additional pharmacological inhibition of cardiac L-type calcium channels or β-adrenoceptors balances the inhibitory proarrhythmic possessions of hERG channel blockers. [57,58,59]. Cardiomyocyte apoptosis is induced by specific transport strategies such as direct infusion or trans-blood vessel drug application. Quality treatment addresses an extra restorative

way to deal with designated concealment of hERG direct articulation in malignant growths. Distinctive proliferative conditions of cardiovascular and growth cells might deliver carcinogenic tissue more powerless to steady of apoptotic and against proliferative lifts, diminishing the overall risk of cardiovascular breakdown during basic utilization of hERG adversaries. The plausibility of growth-specific hERG-based anticancer treatment will additionally rely upon differential medication impacts on malignant and non-carcinogenic tissue communicating hERG K⁺ channels.

Conclusion-

The molecular pharmacology of hERG has brought about acknowledgment, understanding, and background information of LQTS, and still, further improvements are being made to the data by continued research. Besides hERG contributions of other ion channels are being observed and approached in practical ways; also technologies for screening of hERG (K⁺) channels are being improved further to reduce the risks of arrhythmogenic mortalities.

For the development of safer drugs, continued ventures are being made into hERG's structural communications with drugs, as well as into the pathophysiological studies of LQTS.

Acknowledgment

It gives us huge pleasure to convey our heartfelt gratitude to all the respected authors mentioned in the references for their works which have been a valued source of knowledge to review our topic of interest.

Further on, we would like to thank our guide Mr. Arghya Bhattacharya (Assistant Professor of Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences) for his highly instructive advice during our work progress and in finalizing the project making it a quality work.

Finally, we would like to convey our thanks to our parents and friends who encouraged us in all aspects.

Conflict of Interest: The Abstract is presented as an Oral presentation at ICRTB 2022 at MIT ADT University, Pune and the abstract got published at Conference Abstract Book.

Funding: This project is not funded

References:-

1. Sanguinetti MC, Jiang CG, Curran ME, Keating MT . A mechanistic link between an inherited and an acquired cardiac arrhythmia: Herg encodes the *IKr* potassium channel. *Cell* 1995; 81: 299–307.
2. Sanguinetti MC, Tristani-Firouzi M .hERG potassium channels and cardiac arrhythmia. *Nature* 2006; 440: 463–9.
3. Warmke JW, Ganetzky B . A family of potassium channel genes related to eag in *Drosophila* and mammals. *Proc Natl Acad Sci U S A* 1994; 91: 3438–42.
4. Ganetzky B, Wu CF . Neurogenetic analysis of potassium currents in *Drosophila*: synergistic effects on neuromuscular transmission in double mutants. *J Neurogenet* 1983; 1: 17–28.
5. Brody T. Clinical trials: study design, endpoints and biomarkers, drug safety, and FDA and ICH guidelines. Academic press; 2016 Feb 19.
6. Colleen E. Clancy, Yoram Rudy, Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death, *Cardiovascular Research*, Volume 50, Issue 2, May 2001, Pages 301–313,
7. Moss AJ, Kass RS. Long QT syndrome: from channels to cardiac arrhythmias. *J Clin Invest*. 2005 Aug; 115(8):2018-24.
8. Long-QT Syndrome from Genetics to Management Peter J. Schwartz, LiaCrotti, and Roberto Insolia Originally published 1 Aug 2012 Circulation: Arrhythmia and Electrophysiology. 2012; 5:868–877
9. Conduction disorders. American Heart Association. <https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia/conduction-disorders#.WLhwehiZOu4>. Accessed April 29, 2020.
10. Schwartz, Peter J., Michael J. Ackerman, and Samuel Asirvatham. "Congenital long QT syndrome: Epidemiology and clinical manifestations." *U: UpToDate*, Triedman JK, Asirvatham ed. *UpToDate [Internet]* (2018).
11. Giudicessi JR, Wilde AAM, Ackerman MJ. The genetic architecture of long QT syndrome: A critical reappraisal. *Trends Cardiovasc Med* 2018; 28:453.
12. Gopi Mohan, C., et al. "Computer-assisted methods in chemical toxicity prediction." *Mini reviews in medicinal chemistry* 7.5 (2007): 499-507.
13. Berul, Charles I. "Acquired long QT syndrome: Definitions, causes, and pathophysiology." *UpToDate*. <https://www.uptodate.com/contents/acquired-long-qt-syndrome-definition-causes-and-pathophysiology>. Accessed March 3 (2020).
14. Napolitano, C., Splawski, I., Timothy, K.W., Bloise, R. and Priori, S.G., 2015. Timothy syndrome
15. Electrocardiogram [Mayo Clinic] <https://www.mayoclinic.org/tests-procedures/ekg/multimedia/electrocardiogram/img-20007294> accessed 03.03.2022
16. Loar RW, et al. Sudden cardiac arrest during sex in patients with

either catecholaminergic polymorphic ventricular tachycardia or long-QT syndrome: A rare but shocking experience. *Journal of Cardiovascular Electrophysiology*. 2015;26:300.

17. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. *Curr Pharm Des*. 2006; 12(18):2271-83.

18. Sanguinetti MC, Jurkiewicz NK. Two components of delayed rectifier K⁺ current. *J Gen Physiol*. 1990; 96:195–215.

19. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in *Drosophila* and mammals. *Proc Natl Acad Sci USA*. 1994;91:3438–3442.

20. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. *Cell*. 1995;81:299–307

21. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. *Nature*. 2006;440:463–469

22. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. *Curr Pharm Des*. 2006;12:2271–2283

23. Staudacher I, Schweizer PA, Katus HA, Thomas D. hERG: protein trafficking and potential for therapy and drug side effects. *Curr Opin Drug Discov Devel*. 2010;13:23–30.

24. Gonzalez-Juanatey JR, Iglesias MJ, Alcaide C, Pineiro R, Lago F. Doxazosin induces apoptosis in cardiomyocytes cultured *in vitro* by a mechanism that is independent of alpha1-adrenergic blockade. *Circulation*. 2003;107: 127–131.

25. Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. *Cell Cycle* 2009; 8: 3519–28.

26. Wonderlin WF, Strobl JS. Potassium channels, proliferation and G1 progression. *J Membr Biol* 1996; 154: 91–107.

27. Zheng F, Li H, Liang K, Du Y, Guo D, Huang S. Imatinib has the potential to exert its antileukemia effects by down-regulating hERG1 K⁺ channels in chronic myelogenous leukemia. *Med Oncol* 2012; 29: 2127–35.

28. Smith GA, Tsui HW, Newell EW, Jiang X, Zhu XP, Tsui FW, et al. Functional up-regulation of HERG K⁺ channels in neoplastic hematopoietic cells. *J Biol Chem* 2002; 277: 18528–34.

29. Li H, Liu L, Guo L, Zhang J, Du W, Li X, et al. HERG K⁺ channel expression in CD34⁺/CD38[−]/CD123⁺ (high) cells and primary leukemia cells and analysis of its regulation in leukemia cells. *Int J Hematol* 2008; 87: 387–92.

30. Zheng F, Li J, Du W, Wang N, Li H, Huang S. Human *ether-a-go-go-related gene* K⁺ channels regulate shedding of leukemia cell-derived microvesicles. *Leuk Lymphoma* 2012; 53: 1592–8.

31. Roden DM. Long-QT Syndrome. *N Engl J Med* 2008; 358: 169–76.

32. Berger SI, Ma'ayan A, Iyengar R. Systems pharmacology of

arrhythmias. *Sci Signal* 2010; 3: ra30

33. Abdul M, HooseinN . Expression and activity of potassium ion channels in human prostate cancer. *Cancer Lett* 2002; 186: 99–105.

34. Huang X, Dubuc AM, Hashizume R, Berg J, He Y, Wang J, et al. Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. *Genes Dev* 2012; 26: 1780–96.

35. Asher V, Warren A, Shaw R, Sowter H, Bali A, Khan R . The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. *Cancer Cell Int* 2011; 11: 6.

36. Chapman H, Ramstrom C, Korhonen L, Laine M, Wann KT, Lindholm D, et al. Downregulation of the HERG (KCNH2) K(+) channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation. *J Cell Sci* 2005; 118: 5325–34.

37. Bauer CK, Wulfsen I, Schafer R, Glassmeier G, Wimmers S, Flitsch J, et al. HERG K(+) currents in human prolactin-secreting adenoma cells. *Pflugers Arch* 2003; 445: 589–600.

38. Wang X, Hockerman GH, Green HW 3rd, Babbs CF, Mohammad SI, Gerrard D, et al. Merg1a K⁺ channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway. *FASEB J* 2006; 20: 1531–3.

39. Farrelly AM, Ro S, Callaghan BP, Khoyi MA, Fleming N, Horowitz B, et al. Expression and function of KCNH2 (HERG) in the human jejunum. *Am J PhysiolGastrointest Liver Physiol* 2003; 284: G883–95.

40. Ohya S, Asakura K, Muraki K, Watanabe M, ImaizumiY . Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle. *Am J PhysiolGastrointest Liver Physiol* 2002; 282: G277–87.

41. Cvetanovic I, Ranade V, Lin C, SombergJ . The differential antibacterial and gastrointestinal effects of erythromycin and its chiral isolates. *Am J Ther* 2006; 13: 48–56.

42. Hardy AB, Fox JE, Giglou PR, Wijesekara N, Bhattacharjee A, Sultan S, et al. Characterization of Erg K⁺ channels in alpha- and beta-cells of mouse and human islets. *J Biol Chem* 2009; 284: 30441–52.

43. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A, et al. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. *FASEB J* 2000; 14: 2601–10.

44. Greenwood IA, Yeung S, Tribe RM, OhyaS . Loss of functional K⁺ channels encoded by *ether-a-go-go-related* genes in mouse myometrium prior to labour onset. *J Physiol* 2009; 587: 2313–26.

45. Mewe M, Wulfsen I, Schuster AME, Middendorff R, Glassmeier G, Schwarz JR, et al. Erg K⁺ channels modulate contractile activity in the bovine epididymal duct. *Am J PhysiolRegulIntegr Comp Physiol* 2008; 294: R895–904.

46. Bellentani FF, Fernandes GSA, Perobelli JE, Pacini ESA, Kiguti LRA, Pupo AS, et al. Acceleration of sperm transit time and reduction of sperm

reserves in the epididymis of rats exposed to sibutramine.

47. Bhuiyan ZA, Momenah TS, Gong Q, Amin AS, Ghamdi SA, Carvalho JS, et al. Recurrent intrauterine fetal loss due to near absence of HERG: clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. *Heart Rhythm* 2008; 5: 553–61.

48. Danielsson BR, Danielsson C, Nilsson MF. Embryonic cardiac arrhythmia and generation of reactive oxygen species: common teratogenic mechanism for IKr blocking drugs. *Reprod Toxicol* 2007; 24: 42–56.

49. Källén BA, Otterblad Olausson P, Danielsson BR. Is erythromycin therapy teratogenic in humans? *Reprod Toxicol* 2005; 20: 209–14.

50. Dolderer JH, Schuldes H, Bockhorn H, Altmannsberger M, Lambers C, von Zabern D, et al. HERG1 gene expression as a specific tumor marker in colorectal tissues. *Eur J Surg Oncol*. 2010;36:72–77.

51. Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V, et al. VEGFR-1 (FLT-1), beta1 integrin, and hERG K⁺ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. *Blood*. 2007;110:1238–1250.

52. Shao XD, Wu KC, Guo XZ, Xie MJ, Zhang J, Fan DM. Expression and significance of HERG protein in gastric cancer. *Cancer Biol Ther*. 2008;7:45–50.

53. Lastraioli E, Guasti L, Crociani O, Polvani S, Hofmann G, Witchel H, et al. herg1 gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. *Cancer Res*. 2004;64:606–611.

54. Benning CM, Kyprianou N. Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. *Cancer Res*. 2002;62:597–602.

55. Chen SZ, Jiang M, Zhen YS. HERG K⁺ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. *Cancer Chemother Pharmacol*. 2005;56:212–220.

56. Shao XD, Wu KC, Hao ZM, Hong L, Zhang J, Fan DM. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. *Cancer Biol Ther*. 2005;4:295–301.

57. Thomas D, Wendt-Nordahl G, Röckl K, Ficker E, Brown AM, Kiehn J. High-affinity blockade of HERG human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872. *J Pharmacol Exp Ther*. 2001;297:753–761.

58. Thomas D, Gut B, Wendt-Nordahl G, Kiehn J. The antidepressant drug fluoxetine is an inhibitor of human ether-a-go-go-related gene (HERG) potassium channels. *J Pharmacol Exp Ther*. 2002;300:543–548.

59. Zhang S, Zhou Z, Gong Q, Makielski JC, January CT. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. *Circ Res*. 1999;84:989–998.

